
DeepGCNs: Can GCNs Go as Deep as CNNs?
– Supplementary Material –

Guohao Li∗ Matthias Müller∗ Ali Thabet Bernard Ghanem
Visual Computing Center, KAUST, Thuwal, Saudi Arabia

{guohao.li, matthias.mueller.2, ali.thabet, bernard.ghanem}@kaust.edu.sa

1. Deep GCN Variants
In our experiments in the paper, we work with a GCN

based on EdgeConv [2] to show how very deep GCNs can
be trained. However, it is straightforward to build other
deep GCNs with the same concepts we proposed (e.g. resid-
ual/dense graph connections, dilated graph convolutions).
To show that these concepts are universal operators and can
be used for general GCNs, we perform additional experi-
ments. In particular, we build ResGCNs based on Graph-
SAGE [1], Graph Isomorphism Network (GIN) [3] and
MRGCN (Max-Relative GCN) which is a new GCN op-
eration we proposed. In practice, we find that EdgeConv
learns a better representation than the other implementa-
tions. However, it is less memory and computation efficient.
Therefore, we propose a simple GCN combining the advan-
tages of them all.

All of the ResGCNs have the same components (e.g.
dynamic k − NN , residual connections, stochastic dila-
tion) and parameters (e.g. #NNs, #filters and #layers) as
ResGCN-28 in Table Ablation Study of the paper except
for the internal GCN operations. To simplify, we refer to
these models as ResEdgeConv, ResGraphSAGE, ResGIN
and NewResGCN respectively. Note that ResEdgeConv is
an alias for ResGCN in our paper. We refer to it as ResEdge-
Conv to distinguish it from the other GCN operations.
ResEdgeConv. Instead of aggregating neighborhood fea-
tures directly, EdgeConv [2] proposes to first get local
neighborhood information for each neighbor by subtract-
ing the feature of the central vertex from its own feature. In
order to train deeper GCNs, we add residual/dense graph
connections and dilated graph convolutions to EdgeConv:

hres
vl+1

= max
(
{mlp(concat(hvl ,hul

− hvl))|ul ∈ N (d)(vl)}
)
,

hvl+1
= hres

vl+1
+ hvl .

(1)

ResGraphSAGE. GraphSAGE [1] proposes different types
of aggregator functions including a Mean aggregator,

∗equal contribution

LSTM aggregator and Pooling aggregator. Their exper-
iments show that the Pooling aggregator outperforms the
others. We adapt GraphSAGE with the max-pooling aggre-
gator to obtain ResGraphSAGE:

hres
N (d)(vl)

= max
(
{mlp(hul

)|ul ∈ N (d)(vl)}
)
,

hres
vl+1

= mlp
(

concat
(
hvl ,h

res
N (d)(vl)

))
,

hvl+1
= hres

vl+1
+ hvl ,

(2)

In the original GraphSAGE paper, the vertex features are
normalized after aggregation. We implement two variants,
one without normalization (see Equation (2)), the other one
with normalization hres

vl+1
= hres

vl+1
/
∥∥∥hres

vl+1

∥∥∥
2
.

ResGIN. The main difference between GIN [3] and other
GCNs is that an ε is learned at each GCN layer to give the
central vertex and aggregated neighborhood features differ-
ent weights. Hence ResGIN is formulated as follows:

hres
vl+1

= mlp
(
(1 + ε) · hvl + sum({hul

|ul ∈ N (d)(vl)})
)
,

hvl+1
= hres

vl+1
+ hvl .

(3)

ResMRGCN. We find that first using a max aggregator to
aggregate neighborhood relative features (hul

−hvl), ul ∈
N (vl) is more efficient than aggregating raw neighborhood
features hvl , ul ∈ N (vl) or aggregating features after non-
linear transforms. We refer to this simple GCN as MRGCN
(Max-Relative GCN). The residual version of MRGCN is as
such:

hres
N (d)(vl)

= max
(
{hul

− hvl |ul ∈ N (d)(vl)}
)
,

hres
vl+1

= mlp
(

concat
(
hvl

,hres
N (d)(vl)

))
,

hvl+1
= hres

vl+1
+ hvl .

(4)

Where hvl+1
and hvl are the hidden state of vertex v at l+1;

hres
vl+1

is the hidden state of the residual graph. All the mlp



Model mIoU ∆mIoU dynamic connection dilation stochastic # NNs # filters # layers

ResEdgeConv-28 52.49 0.00 X ⊕ X X 16 64 28

PlainGCN-28 40.31 -12.18 X 16 64 28

ResGraphSAGE-28 49.20 -3.29 X ⊕ X X 16 64 28

ResGraphSAGE-N-28 49.02 -3.47 X ⊕ X X 16 64 28

ResGIN-ε-28 42.81 -9.68 X ⊕ X X 16 64 28

ResMRGCN-28 51.17 -1.32 X ⊕ X X 16 64 28

Table 1. Comparisons of Deep GCNs variants on area 5 of S3DIS. We compare our different types of ResGCN (ResEdgeConv, Res-
GraphSAGE, ResGIN and ResMRGCN) with 28 layers. Residual graph connections and Dilated graph convolutions are added to all the
GCN variants. All models were trained with the same hyper-parameters for 100 epochs on all areas except for area 5 which is used for
evaluation. We denote residual with the ⊕ symbols.

(multilayer perceptron) functions use a ReLU as activation
function; all the max and sum functions above are vertex-
wise feature operators; concat functions concatenate fea-
tures of two vertices into one feature vector. N (d)(vl) de-
notes the neighborhood of vertex vl obtained from Dilated
k-NN.

2. Results for Deep GCN Variants

Table 1 shows a comparison of different deep resid-
ual GCNs variants on the task of semantic segmenta-
tion; we report the mIOU for area 5 of S3DIS. All deep
GCN variants are 28 layers deep and we denote them
as ResEdgeConv-28, ResGraphSAGE-28, ResGraphSAGE-
N-28, ResGIN-ε-28 and ResMRGCN-28; ResGraphSAGE-
28 is GraphSAGE without normalization, ResGraphSAGE-
N-28 is the version with normalization. The results
clearly show that different deep GCN variants with resid-
ual graph connections and dilated graph convolutions con-
verge better than the PlainGCN. ResMRGCN-28 achieves
almost the same performance as ResEdgeConv-28 while
only using half of the GPU memory. ResGraphSAGE-
28 and ResGraphSAGE-N-28 are slightly worse than
ResEdgeConv-28 and ResMRGCN-28. The results also
show that using normalization for ResGraphSAGE is not es-
sential. Interestingly, we find that ResGIN-ε-28 converges
well during the training phase and has a high training ac-
curacy. However, it fails to generalize to the test set. This
phenomenon is also observed in the original paper [3] in
which they find setting ε to 0 can get the best performance.
Therefore, we can draw the conclusion that the concepts
we proposed (e.g. residual/dense graph connections and di-
lated graph convolutions) generalize well to different types
of GCNs and enable training very deep GCNs.

3. Qualitative Results for the Ablation Study

We summarize the most important insights of the abla-
tion study in Figure 1. Figures 2, 3, 4, 5, 6 show qualitative

mIoU

reference
w/o stochastic

w/o dilation
w/o residual

1/2x NNs
1/4x NNs

1/2x layers
1/4x layers
1/2x filters
1/4x filters

2x layers, 1/2x NNs
2x filters, 1/2x NNs

35.00 37.50 40.00 42.50 45.00 47.50 50.00 52.50 55.00

Figure 1. Ablation study on area 5 of S3DIS. We compare our
reference network (ResGCN-28) with 28 layers, residual graph
connections and dilated graph convolutions to several ablated vari-
ants. All models were trained for 100 epochs on all areas except
for area 5 with the same hyper-parameters.

results for the ablation study presented in the paper.

4. Run-time Overhead of Dynamic k-NN

We conduct a run-time experiment comparing the infer-
ence time of the reference model (28 layers, k=16) with
dynamic k-NN and fixed k-NN. The inference time with
fixed k-NN is 45.63ms. Computing the dynamic k-NN in-
creases the inference time by 150.88ms. It is possible to
reduce computation by updating the k-NN less frequently
(e.g. computing the dynamic k-NN every 3 layers).

5. Comparison with DGCNN over All Classes

To showcase the consistent improvement of our frame-
work over the baseline DGCNN [2], we reproduce the re-
sults of DGCNN∗ in Table 2 and find our method outper-
forms DGCNN in all classes.

∗The results over all classes were not provided in the original DGCNN
paper



Class DGCNN [2] ResGCN-28 (Ours)

ceiling 92.7 93.1
floor 93.6 95.3
wall 77.5 78.2
beam 32.0 33.9
column 36.3 37.4
window 52.5 56.1
door 63.7 68.2
table 61.1 64.9
chair 60.2 61.0
sofa 20.5 34.6
bookcase 47.7 51.5
board 42.7 51.1
clutter 51.5 54.4

mIOU 56.3 60.0

Table 2. Comparison of ResGCN-28 with DGCNN. Average per-
class results across all areas for our reference network with 28
layers, residual graph connections and dilated graph convolutions
compared to DGCNN baseline. ResGCN-28 outperforms DGCNN
across all the classes. Metric shown is IoU.

References
[1] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive

representation learning on large graphs. In Advances in Neural
Information Processing Systems, pages 1024–1034, 2017.

[2] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. arXiv preprint
arXiv:1801.07829, 2018.

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.



Figure 2. Qualitative Results for S3DIS Semantic Segmentation. We show the importance of stochastic dilated convolutions.



Figure 3. Qualitative Results for S3DIS Semantic Segmentation. We show the importance of the number of nearest neighbors used in
the convolutions.



Figure 4. Qualitative Results for S3DIS Semantic Segmentation. We show the importance of network depth (number of layers).



Figure 5. Qualitative Results for S3DIS Semantic Segmentation. We show the importance of network width (number of filters per layer).



Figure 6. Qualitative Results for S3DIS Semantic Segmentation. We show the benefit of a wider and deeper network even with only
half the number of nearest neighbors.


