
(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

A. COCO-GAN during Testing Phase

Micro Coordinate 𝒄′′

Latent Vector 𝒛

Figure 1: An overview of COCO-GAN during testing phase. The micro patches generated by G are directly combined into a
full image as the final output.

B. Symbols
Group Symbol Name Description Usage

Model

G Generator Generates micro patches. s′′ = G(z, c′′)
D Discriminator Discriminates macro patches. D(ϕ(G(z,C′′)))
A Spatial prediction head Predicts coordinate of a given macro patch. ĉ′ = A(x′)
Q †Content prediction head Predicts latent vector of a given macro patch. zest = Q(s′)

Heuristic
Function

ϕ Merging function Merges multiple s′′ to form a s′ or s. s′ = ϕ(G(z,C′′))
ψ Cropping function Crops x′ from x. Corresponding to ϕ. x′ = ψ(x, c′)

Variable

z Latent vector Latent variable shared among s′′ generation. s′′ = G(z, c′′)
zest

†Predicted z Predicted z of a given macro patch. LQ = E [‖z − zest‖1]
c′ Macro coordinate Coordinate for macro patches on D side. LS = E [‖c′ − ĉ′‖2]
c′′ Micro coordinate Coordinate for micro patches on G side. s′′ = G(z, c′′)
ĉ′ Predicted c′ Coordinate predicted by A with a given x′. LS = E [‖c′ − ĉ′‖2]
C′′ Matrix of c′′ The matrix of c′′ used to generate S′′. s′ = ϕ(G(z,C′′))

Data

x Real full image Full resolution data, never directly used. x′ = ψ(x, c′)
x′ Real macro patch A macro patch of x which D trains on. advx′ = D(ψ(x, c′))
s′ Generated macro patch Composed by s′′ generated with C′′. advs′ = D(s′)
s′′ Generated micro patch Smallest data unit generated by G. s′′ = G(z, c′′)
S′′ Matrix of s′′ Matrix of s′′ generated by C′′. S′′ = G(z,C′′)
ŝ′ Interpolated macro patch Interpolation between random x′ and s′. ŝ′ = ε s′ + (1− ε)x′, which ε ∼ [0, 1]

Loss

LW WGAN loss The patch-level WGAN loss. LW = E [D(x′)]− E [D(s′)]
LGP Gradient penalty loss The gradient penalty loss to stabilize training. LGP = E

[
(‖∇ŝ′D(ŝ′)‖2 − 1)2

]
LS Spatial consistency loss Consistency loss of coordinates. LS = E [‖c′ −A(x′)‖2]
LQ

†Content consistency loss Consistency loss of latent vectors. LQ = E [‖z −Q(s′)‖1]
Hyper-

parameter
α Weight of LS Controls the strength of LS (we use 100).

{
LW + λLGP + αLS , forD,
−LW + αLS , forG.λ Weight of LGP Controls the strength of LGP (we use 10).

Testing
Only

s Generated full image Composed by s′′ generated with C′′
Full. s = ϕ(G(z,C′′

Full))
C′′

Full Matrix of c′′ for testing The matrix of c′′ used during testing. s = ϕ(G(z,C′′
Full))

† Only used in “Patch-Guided Image Generation” application.

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

C. Experiments Setup and Model Architecture Details
Architecture. Our G and D design uses projection discriminator [6] as the backbone and adding class-projection to
the discriminator. All convolutional and feed-forward layers of generator and discriminator are added with the spectral-
normalization [7] as suggested in [9]. Detailed architecture diagram is illustrated in Figure 2 and Figure 3. Specifically,
we directly duplicate/remove the last residual block if we need to enlarge/reduce the size of output patch. However, for
(N8,M8,S8) and (N16,M16,S4) settings, since the model becomes too shallow, we keep using (N4,M4,S16) architecture, but
without strides in the last one and two layer(s), respectively.

Conditional Batch Normalization (CBN). We follow the projection discriminator that employs CBN [3, 2] in the generator.
The concept of CBN is to normalize, then modulate the features by conditionally produce γ and β that used in conventional
batch normalization, which computes oK = ((iK −µK)/σK) ∗ γ+β for the K-th input feature iK , output feature oK , feature
mean µK and feature variance σK . However, in the COCO-GAN setup, we provide both spatial coordinate and latent vector
as conditional inputs, which both having real values instead of common discrete classes. As a result, we create two MLPs,
MLPγ(z, c) and MLPβ(z, c), for each CBN layer, that conditionally produces γ and β.

Hyperparameters. For all the experiments, we set the gradient penalty weight λ = 10 and auxiliary loss weight α = 100.
We use Adam [5] optimizer with β1 = 0 and β2 = 0.999 for both the generator and the discriminator. The learning rates are
based on the Two Time-scale Update Rule (TTUR) [4], setting 0.0001 for the generator and 0.0004 for the discriminator as
suggested in [9]. We do not specifically balance the generator and the discriminator by manually setting how many iterations
to update the generator once as described in the WGAN paper [1].

Coordinate Setup. For the micro coordinate matrix C ′′(i,j) sampling, although COCO-GAN framework supports real-valued
coordinate as input, however, with sampling only the discrete coordinate points that is used in the testing phase will result in
better overall visual quality. As a result, all our experiments select to adopt such discrete sampling strategy. We show the
quantitative degradation in the ablation study section. To ensure that the latent vectors z, macro coordinate conditions c′, and
micro coordinate conditions c′′ share the similar scale, which z and c′′ are concatenated before feeding to G. We normalize c′

and c′′ values into range [−1, 1], respectively. For the latent vectors z sampling, we adopts uniform sampling between [−1, 1],
which is numerically more compatible with the normalized spatial condition space.

Input shape: (B, 128)

G_Residual_Block
Output shape: (B, 4, 4, 512)

y

Output shape: (B, 32, 32, 3)
Generator 32x32

G_Residual_Block
Output shape: (B, 8, 8, 256)

G_Residual_Block
Output shape: (B, 16, 16, 128)

G_Residual_Block
Output shape: (B, 32, 32, 64)

Conv2D

Batch Normalization

ReLU

tanh

Linear + Reshape
Output shape: (B, 2, 2, 1024)

(a) Generator Overall Architecture

ReLU
Output shape: (B, H, W, C)

Input shape: (B, H, W, C)

Conv2D
Output shape: (B, Hx2, Wx2, D)

Up Scale
Output shape: (B, Hx2, Wx2, C)

CBN
Output shape : (B, Hx2, Wx2, D)

y

ReLU
Output shape : (B, Hx2, Wx2, D)

Conv2D
Output shape: (B, Hx2, Wx2, D)

Conv2D
Output shape: (B, Hx2, Wx2, D)

Up Scale
Output shape: (B, Hx2, Wx2, C)

Element-wise Add
Output shape: (B, Hx2, Wx2, D)

Output shape: (B, Hx2, Wx2, D)

Generator Residual Block

(b) Generator Residual Block

Figure 2: The detailed generator architecture of COCO-GAN for generating micro patches with a size of 32× 32 pixels.

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

Input shape: (B, 64, 64, 3)

D_Residual_Block (w/o 1st relu)
Output shape: (B, 32, 32, 64)

y

Discriminator
64x64

D_Residual_Block
Output shape: (B, 16, 16, 128)

D_Residual_Block
Output shape: (B, 8, 8, 256)

D_Residual_Block
Output shape: (B, 4, 4, 512)

D_Residual_Block (w/o pooling)
Output shape: (B, 4, 4, 512)

Linear
Output shape: (B, 1)

Global Pooling
Output shape: (B, 512)

ReLU

Linear
Output shape: (B, 512)

Element-wise Multiply
Output shape: (B, 512)

Reduce Sum
Output shape: (B, 1)

Sum
Output shape: (B, 1)

Projection

Output shape: (B, 1)

H

(a) Discriminator Overall Architecture

ReLU
Output shape: (B, Hx2, Wx2, C)

Input shape: (B, Hx2, Wx2, C)

Conv2D
Output shape: (B, Hx2, Wx2, D)

ReLU
Output shape : (B, Hx2, Wx2, D)

Conv2D
Output shape: (B, Hx2, Wx2, D)

Conv2D
Output shape: (B, H, W, D)

Average Pooling
Output shape: (B, H, W, C)

Element-wise Add
Output shape: (B, H, W, D)

Output shape: (B, H, W, D)

Discriminator Residual Block

Average Pooling
Output shape: (B, H, W, D)

(b) Discriminator Residual Block

H
(last feature map of discriminator)

Input shape: (B, 512)

Leaky ReLU
Output shape : (B, Hx2, Wx2, D)

Output shape: (B, 1)

Discriminator Auxiliary Head

Batch Normalization

Linear
Output shape: (B, 128)

Batch Normalization

Linear
Output shape: (B, 128)

tanh

(c) Discriminator Auxiliary Head

Figure 3: The detailed discriminator architecture of COCO-GAN for discriminate macro patches with a size of 64× 64 pixels.
Both the content vector prediction head (Q) and the spatial condition prediction head use the same structure shown in (c).

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

D. Example of Coordinate Design

Macro
Patch

Macro
Patch

Macro
Patch

Micro
Patch

(a) Implementations used in this paper with (Left) P4x4, (Middle) P8x8 and (Right) P16x16.

Macro Patch Macro Patch

(b) Other possible implementations (not used in this paper).

Figure 4: We showcase some of the coordinate systems: (a) implementations we used in our experiments, and (b) some of the
other possible implementations. For instance, 3D cubic data may choose to use each of its face as a macro patch. Also, a
recent work [8] shows that horizontal tiles are naturally suitable for indoor layout task on panoramas, which points out that
using horizontal tiles as macro patch in panorama generation may be an interesting future direction.

E. Beyond-Boundary Generation: More Examples and Details of Post-Training

Figure 5: Without any extra train-
ing, original COCO-GAN can already
perform slight extrapolations (i.e. the
edge of the bed extends out of the nor-
mal generation area annotated with
the red box), however, expectedly dis-
continuous on the edges.

We show more examples of “Beyond-Boundary Generation” in Figure 6.

Directly train with coordinates out of the [−1, 1] range (restricted by the real full
images) is infeasible, since there is no real data at the coordinates outside of the
boundary, thus the generator can exploit the discriminator easily. However, interest-
ingly, we find extrapolating the coordinates of a manually trained COCO-GAN can
already produce contents that seemingly extended from the edge of the generated
full images (e.g., Figure 5).

With such an observation, we select to perform additional post-training on the check-
point(s) of manually trained COCO-GAN (e.g., (N4,M4,S64) variant of COCO-
GAN that trained on LSUN dataset for 1 million steps with resolution 256×256 and
a batch size 128). Aside from the original Adam optimizer that trains COCO-GAN
with coordinates ∈ [−1, 1], we create another Adam optimizer with the default
learning rate setup (i.e., 0.0004 for D and 0.0001 for G). The additional optimizer
trains COCO-GAN with additional coordinates along with the original coordinates.
For instance, in our experiments, we extend an extra micro patch out of the image
boundary, as a result, we train the model with c′′ ∈

[
−1.66, 1.66

]
(the distance

between two consecutive micro patches is 2/(4− 1) = 0.66) and c′ ∈ [−2, 2] (the
distance between two consecutive micro patches is 2/((4− 1)− 1) = 1). We only
use the new optimizer to train COCO-GAN until the discontinuity becomes patches
becomes invisible. Note that we do not train the spatial prediction head A with
coordinates out of [−1, 1], since our original model has a tanh activation function
on the output of A, which is impossible to produce predictions out of the range of [−1, 1].

We empirically observe that by only training the first-two layers of the generator (while the whole discriminator at the same
time) can largely stabilize the post-training process. Otherwise, the generator will start to produce weird and mottled artifacts.
As the local textures are handled by later layers of the generator, we decide to freeze all the later layers and only train the
first-two layers, which controls the most high-level representations. We flag the more detailed investigation on the root-cause
of such an effect and other possible solutions as interesting future research direction.

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

Figure 6: “Beyond-Boundary Generation” generates additional contents by extrapolating the learned coordinate manifold.
Note that the generated samples are 384× 384 pixels, whereas all of the training samples are of a smaller 256× 256 resolution.
The red box annotates the 256× 256 region for regular generation without extrapolation.

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

F. More Full Image Generation Examples

(a) Selected generation samples.

(b) Random generation without calibration.

(c) Generated micro patches.

Figure 7: Full images generated by COCO-GAN on CelebA 128× 128 with (N2,M2,S32) setting.

Due to file size limit, all images are compressed, please access the full resolution pdf from: https://goo.gl/5HLynv

https://goo.gl/5HLynv

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

(a) Selected generation samples.

(b) Random generation without calibration.

(c) Generated micro patches.

Figure 8: Full images generated by COCO-GAN on CelebA 128× 128 with (N4,M4,S16) setting.

Due to file size limit, all images are compressed, please access the full resolution pdf from: https://goo.gl/5HLynv

https://goo.gl/5HLynv

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

(a) Selected generation samples.

(b) Random generation without calibration.

(c) Generated micro patches.

Figure 9: Full images generated by COCO-GAN on CelebA 128× 128 with (N8,M8,S8) setting.

Due to file size limit, all images are compressed, please access the full resolution pdf from: https://goo.gl/5HLynv

https://goo.gl/5HLynv

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

(a) Selected generation samples.

(b) Random generation without calibration.

(c) Generated micro patches.

Figure 10: Full images generated by COCO-GAN on CelebA 128× 128 with (N16,M16,S4) setting.

Due to file size limit, all images are compressed, please access the full resolution pdf from: https://goo.gl/5HLynv

https://goo.gl/5HLynv

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

(a) Selected generation samples.

(b) Random generation without calibration.

(c) Generated micro patches.

Figure 11: Full images generated by COCO-GAN on LSUN 256× 256 with (N4,M4,S64) setting.

Due to file size limit, all images are compressed, please access the full resolution pdf from: https://goo.gl/5HLynv

https://goo.gl/5HLynv

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

G. More Interpolation Examples
Micro Patches Interpolation Full-Images Interpolation

(a) CelebA (128× 128).

Micro Patches Interpolation Full-Images Interpolation

(b) LSUN (bedroom category) (256× 256).

Figure 12: More interpolation examples. Given two latent vectors, COCO-GAN generates the micro patches and full images
that correspond to the interpolated latent vectors.

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

H. More Panorama Generation Samples

Figure 13: More examples of generated panoramas. All samples possess the cyclic property along the horizontal direction.
Each sample is generated with a resolution of 768× 256 pixels, and micro patch size 64× 64 pixels.

I. Spatial Coordinates Interpolation

Figure 14: Spatial interpolation shows the spatial continuity of the micro patches. The spatial conditions are interpolated
between range [−1, 1] of the micro coordinate with a fixed latent vector.

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

J. Ablation Study

Figure 15: FID score curves of different variants of COCO-GAN in CelebA 64× 64 setting. Combined with Figure 16, the
results do not show significant differences in quality between COCO-GAN variants. Therefore, COCO-GAN does not pay
significant trade-off for the conditional coordinate property.

(a) COCO-GAN (ours). (b) COCO-GAN (cont sampling). (c) COCO-GAN (optimal D).

(d) COCO-GAN (optimal G). (e) Multiple generators.

Figure 16: Some samples generated by different variants of COCO-GAN. Note that each set of samples is extracted at the
epoch when each model variant reaches its lowest FID score. We also provide more samples for each of the variants at different
epochs via following : https://goo.gl/Wnrppf.

https://goo.gl/Wnrppf

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

K. Patch-Guided Image Generation

(a) (CelebA 128×128) Real full images. (b) (CelebA 128×128) Real macro patches.

(c) (CelebA 128×128) Patch-guided full image generation. (d) (CelebA 128×128) Patch-guided macro patch generation.

Figure 17: Patch-guided image generation can loosely retain some local structure or global characteristic of the original image.
(b) shows the patch-guided generated images based on zest estimated from (a). The blue boxes visualize the predicted spatial
coordinates A(x′), while the red boxes indicates the ground truth coordinates c′. Since the information loss of cropping the
macro patches from real images is critical, we do not expect (b) to be identical to the original real image. Instead, the area
within blue boxes of (b) should be visually similar to (a), in the meanwhile, (b) should be globally coherent.

(Appendix) COCO-GAN: Generation by Parts via Conditional Coordinating

L. Training Indicators

(a) Wasserstein distance (b) FID

Figure 18: Both Wasserstein distance and FID through time show that the training of COCO-GAN is stable. Both two figures
are logged while training on CelebA with 128× 128 resolution.

References
[1] Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein genera-

tive adversarial networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, pp. 214–223, 2017. 2

[2] de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O.,
and Courville, A. C. Modulating early visual processing by
language. In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp.
6597–6607, 2017. 2

[3] Dumoulin, V., Shlens, J., and Kudlur, M. A learned representa-
tion for artistic style. CoRR, abs/1610.07629, 2016. 2

[4] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pp. 6629–6640, 2017. 2

[5] Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. 2

[6] Miyato, T. and Koyama, M. cgans with projection discriminator.
CoRR, abs/1802.05637, 2018. 2

[7] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. CoRR,
abs/1802.05957, 2018. 2

[8] Sun, C., Hsiao, C.-W., Sun, M., and Chen, H.-T. Horizonnet:
Learning room layout with 1d representation and pano stretch
data augmentation. arXiv preprint arXiv:1901.03861, 2019. 4

[9] Zhang, H., Goodfellow, I. J., Metaxas, D. N., and Odena,
A. Self-attention generative adversarial networks. CoRR,
abs/1805.08318, 2018. 2

