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1. Detecting Unexpected Objects
The legend for the semantic class colors used throughout

the article is given in Fig. 1. We present additional examples
of the anomaly detection task in Fig. 2.

The synthetic training process alters only foreground ob-
jects. A potential failure mode could therefore be for the
network to detect all foreground objects as anomalies, thus
finding not only the true obstacles but also everything else.
In Fig. 3, we show that this does not happen and that ob-
jects correctly labeled in the semantic segmentation are not
detected as discrepancies.

In Fig. 4, we illustrate the fact that, sometimes, objects
of known classes differ strongly in appearance from the in-
stances of this class present in the training data, resulting in
them being marked as unexpected.

We present a failure case of our method in Fig. 5:
Anomalies similar to an existing semantic class are some-
times not detected as discrepancies if the semantic segmen-
tation marks them as this similar class. For example, an
animal is assigned to the person class and missed by the
discrepancy network. In that case, however, the system as a
whole is still aware of the obstacle because of its presence
in the semantic map.

1.1. Discrepancy Network

Our discrepancy network relies on the implementations
of PSP Net [10] and SegNet [1] kindly provided by Zijun
Deng. The detailed architecture of the discrepancy network
is shown in Fig. 6. We utilize a pre-trained VGG16 [8] to
extract features from images and calculate their pointwise
correlation, inspired by the co-segmentation network of [6].
The up-convolution part of the network contains SELU ac-
tivation functions [5]. The discrepancy network was trained
for 50 epochs using the Cityscapes [2] training set with
synthetically changed labels as described in Section 3.2 of
the main paper. We used the Adam [4] optimizer with a
learning rate of 0.0001 and the per-pixel cross-entropy loss.
We utilized the class weighting scheme introduced in [7] to

Full Labels only Resynthesis only

Supervised 0.94 0.93 0.96
Unsupervised 0.82 0.79 0.76

Table 1: Performance of the discrepancy network in a super-
vised setting. AUROC scores measured on the Lost and Found
dataset.

offset the unbalanced numbers of pixels belonging to each
class.

Supervised Discrepancy Network. To get an upper
bound on its accuracy, we test the discrepancy network in
a supervised setting. To this end, we use the ground-truth
anomaly labels of the Lost and Found training set, with se-
mantics predicted by PSP Net. The AUROC scores, mea-
sured on the test set, are shown in Table 1.

2. Detecting Adversarial Samples
We show additional results on adversarial example de-

tection on the Cityscapes and BDD datasets using the Hou-
dini and DAG attack schemes in Figs. 7 and 8. To obtain
these results, we set the maximal number of iterations to
200 in all settings and L∞ perturbation of 0.05 across each
iteration of the attack. We randomly choose 80% of the
original validation samples to train the logistic detectors and
the rest of the samples are used for evaluation. While evalu-
ating the state-of-the-art Scale Consistency method [9], we
found by cross-validation that a patch size of 256× 256 re-
sulted in the best performance for an input image of size
1024× 512.

3. Image Attribution
We used Wikimedia Commons images kindly provided

under the Creative Commons Attribution license by the
following authors: Thomas R Machnitzki1, Megan Beck-

1commons.wikimedia.org/wiki/File:Goose_on_the_road_Memphis_TN_2013-03-17_001.jpg
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Figure 1: Semantic map legend. The colors used in se-
mantic maps throughout this article correspond to the object
classes listed above.

ett2, Infrogmation3, Kyah4, PIXNIO5, Matt Buck6, Luca
Canepa7, Jonas Buchholz8 and Kelvin JM9.

2commons.wikimedia.org/wiki/File:Rhino_crossing_road.JPG
3commons.wikimedia.org/wiki/File:Broadmoor9JanConesSkidloader.jpg
4commons.wikimedia.org/wiki/File:Federation_chantier_aout_2006_-_5.JPG
5commons.wikimedia.org/wiki/File:Bovine_catle_beside_road.jpg
6commons.wikimedia.org/wiki/File:Beeston_MMB_A6_Middle_Street.jpg
7commons.wikimedia.org/wiki/File:Zebra_Crossing_Abbey_Road_Style_(63894353).jpeg
8commons.wikimedia.org/wiki/File:Aihole-Pattadakal_road.JPG
9commons.wikimedia.org/wiki/File:A_man_carrying_dry_grass_on_bicycle_for_domestic_animal_like_cows.jpg
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Figure 2: Additional examples of the anomaly detection task



Input image Predicted semantic map - Baysesian Seg Net
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Figure 3: The synthetic training process alters only foreground objects, but that does not mean our discrepancy network learns
to blindly mark all such objects. In the top row, we show an example where the Bayesian SegNet failed to correctly label
some of the people present, and this discrepancy is detected by our network. However, our detector reports no discrepancy
when the PSP Net correctly labels the people in the image (third row).
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Figure 4: Unusual versions of known objects. Objects of known classes are marked as anomalies because their appearance
differs from the examples of this class present in the training data, for example the fence in the first row (fence class) and
the dark sky in the third row. Note that the RBM patch-based method [3] is especially sensitive to edges and so it detects the
zebras very well.
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Figure 5: Failure cases. Our approach sometimes fails when the anomaly bears resemblance to an existing class: For
example, animals classified as people in the first row or transported hay classified as vegetation in the third row. The system
as a whole is nonetheless still aware of the obstacle because of its presence in the semantic map.
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Figure 6: Architecture of our discrepancy network.



(a) Input image (normal) (b) Predicted map
(normal)

(c) Predicted map (Shift) (d) Resynthesized image
(normal)

(e) Resynthesized image
(Shift)

Figure 7: Detecting Houdini adversarial attacks on Cityscapes. Without attack, the re-synthesized image (d) obtained
from (b) looks similar to it. By contrast, the resynthesized image (e) obtained from the semantic maps (c) computed from a
Houdini-compromised input differs massively from the original one.
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(c) Predicted map (Shift) (d) Resynthesized image
(normal)

(e) Resynthesized image
(Shift)

Figure 8: Detecting DAG adversarial attacks on the BDD dataset. Without attack, the re-synthesized image (d) obtained
from (b) looks similar to it. By contrast, the resynthesized image (e) obtained from the semantic maps (c) computed from a
DAG-compromised input differs massively from the original one.


