
A. Additional Qualitative Results

We showcase additional qualitative results comparing
our stereo compression model against other baselines, from
BPG and JPEG2000 to single-image Ballé to our residual
coding baseline. We note that for the baselines, we report
a separate bitrate per camera, since each camera image is
compressed as a single image. However, for our stereo
model, we report the joint bitrate divided by 2. The
reason for this is that even though our models outputs
a separate code for each image, the first code ȳ1 may
contain additional information to help the compression of
the second code ȳ2, since it is used as an input for both our
skip functions and conditional entropy. We report separate
perceptual metrics per camera image for all models.

A.1. Additional Qualitative Results from Stereo
Model

Here, we showcase additional qualitative results for
Cityscapes and NorthAmerica in Fig. 6 and 8 respectively.
On Cityscapes, where the image resolution is 1920 × 720,
the closest competing algorithm is generally BPG. We
highlight the differences and tradeoffs between our model
and BPG in Fig. 6. In general, BPG tends to do a better job
at preserving certain high-frequency information - such as
road signs and license plates - at the expense of introducing
artifacts, discoloration, and blurriness in other regions. We
also find BPG might enhance some high-frequency regions
while blurring others. In contrast, our model provides a
more consistent level of detail across all image regions.

On NorthAmerica, where the image resolution is 480 ×
300, our model demonstrates more crisp results at lower
bitrates compared to all competing algorithms, as shown in
Fig. 8.

A.2. Artifacts from Residual Coding Baseline

We showcase results from our residual coding baseline.
In Fig. 11, we compare the reconstructions between
camera 1 (effectively produced via a single-image Ballé
network), and camera 2 (produced via the output of
motion-compensation using SGM and residual coding using
a separate Ballé network) on a stereo image pair in
Cityscapes. We additionally include the same output
from our stereo model. The camera 2 reconstruction has
overall higher perceptual metrics in terms of PSNR/MS-
SSIM at a lower bitrate, and also that certain regions
in the image look undeniably sharper than in camera 1
and in the outputs from our own stereo model (shown by
the green boxes). However, we highlight other regions,
shown by the red boxes, where there exist jarring artifacts
in the camera 2 reconstruction that are not present in
camera 1 nor in our stereo model outputs. There are
cuts/tears around the boundaries where SGM does not
output valid disparities; moreover there exist significant
warping artifacts around regions with larger disparities that
are predicted less accurately.

We did not attempt any additional fine-tuning or
refinement after merging the residual image with the
disparity-warped first reconstruction to construct the second
reconstruction. We leave that as an interesting direction
to explore in future work. We also note that the artifacts
start to go away at higher bitrates, but at that point the
overall performance of the stereo residual baseline also
deterioriates to below the curve of the single-image Ballé
model.

The artifacts also exist in NorthAmerica, where our
deep residual coding baseline underperforms even single-
image compression at all bitrates. We show a sample
original/reconstructed disparity map, residual image, and
final image in Fig. 10.



Input (Cam 2)

JPEG2000 (Cam 2), Bitrate: 0.0649, PSNR: 33.72

Ballé (Cam 2), Bitrate: 0.0739, PSNR: 35.10

Figure 6: Comparison between the reconstructions of competing baselines and our method on a Cityscapes image (in camera 2). We focus
on comparing our method with BPG (next page). BPG sharpens high-frequency details and distorts others with blurriness and/or artifacts,
whereas we provide a more consistent level of detail across the image. The red box demonstrates a region where BPG provides shaper
details, whereas the green box demonstrates where our method is better.

B. Expanded Ablation Studies
In our ablation study in the main paper (see Fig 5.

in the main paper), we measure the independent effects

of our parametric skip functions, conditional entropy, and
hyperprior by adding them on top of a factorized-prior
model. Here, in our expanded ablation study, we measure



BPG (Cam 2), Bitrate: 0.0628, PSNR: 35.27

MV-HEVC (Cam 2), Bitrate: 0.0666, PSNR: 36.57

Ours (Cam 2), Bitrate: 0.0610, PSNR: 35.95

Figure 6: (Continued)

the separate effects of our parametric skip functions and
conditional entropy when combined with a single-image
hyperprior model.

The results are shown in Fig. 12. We observe that
our results follow a similar trend to that in the main
paper. DispSkip provides the highest bitrate savings and

perceptual metrics gains at lower bitrates, and decreases
for higher bitrates (especially for Cityscapes). Meanwhile,
adding a conditional entropy component adds relatively
consistent bitrate savings at all levels compared to the
hyperprior model. We also observe cannibalization effects
when combining DispSkip with conditional entropy, which



Input (Cam 1)

JPEG2000 (Cam 1), Bitrate: 0.0639, PSNR: 34.22

Ballé (Cam 1), Bitrate: 0.0712, PSNR: 35.27

Figure 7: Additional qualitative comparions on a Cityscapes image (in camera 1).

is also observed in the main paper; yet again, combining
DispSkip with conditional entropy yields the best results at
all bitrates.

C. Additional Architecture Details

We provide additional architecture details in this section
on various aspects of our model. First, in Section C.1, we
provide some more details about our main encoder/decoder
architecture. Then, in Section C.2, we provide architecture



BPG (Cam 1), Bitrate: 0.0640, PSNR: 35.64

MV-HEVC (Cam 1), Bitrate: 0.0640, PSNR: 37.43

Ours (Cam 1), Bitrate: 0.0588, PSNR: 36.97

Figure 7: (Continued)

details about the main components of our parametric skip
functions: predicting the global context, predicting the cost
volume at each level of the encoder/decoder, as well as
the final feature aggregation. Finally, in Section C.3, we
provide details for the varous components that make up
our conditional entropy model: our hyper-encoder (deriving

hyperpriors from our image code), our factorized prior
entropy model for our hyperpriors, and our GMM-based
model for our image codes.
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JPG (Cam 1), Bitrate: 0.343, PSNR: 29.46 JPG (Cam 2), Bitrate: 0.339, PSNR: 29.48

BPG (Cam 1), Bitrate: 0.331, PSNR: 30.90 BPG (Cam 2), Bitrate: 0.332, PSNR: 30.92

Figure 8: Comparison between the reconstructions of competing baselines and our method on a NorthAmerica stereo pair. We observe that
our method yields the highest PSNR at the lowest bitrate compared to all competing methods (34% reduction in residual bitrate compared
to Ballé).

C.1. Additional Architecture Details for
Encoder/Decoder

The number of channels for each intermediate layer in
both the encoder/decoder of each image is set to N , and the
number of channels of each of the two codes, ȳ1, ȳ2 is set
to M . For the lower bitrates (< 0.7), we set N = 100 and
M = 140; we found that setting a smaller bottleneck didn’t
affect model performance too much and allowed the models

to train much faster. For the higher bitrates (≥ 0.7), we set
N = 192 and M = 256.

C.2. Architecture Details of Parametric Skip
Function

Recall that our parametric skip functions consist of four
main components. A global context feature is predicted
from the code of image 1 ȳ1, in order to capture global
information from image 1. Then, at each level of the
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Figure 8: (Continued)

encoder/decoder, we predict a stereo cost volume from
ht−1

1 , ht−1
2 - the feature maps of image 1 and 2 from the

previous layer - as well as the global context feature. We
use the cost volume to densely warp ht−1

1 from image 1
to image 2, and finally aggregate this warped feature with
ht−1

2 . We describe the architecture details of predicting the
global context, predicting the stereo cost volume at each
level, and aggregating the features below.

Global Context: The global context module takes as
input ȳ1, the first image code, with dimensionsM×H/16×
W/16, where M is the channel dimension and H,W are
the height/width of the original image. It passes ȳ1 through
four 2D convolutional layers. Each conv layer except the
last is followed by a GroupNorm [50] and ReLU layer. In
general we use GroupNorm instead of BatchNorm [18] in
our models due to our small batch sizes.

The dimension of each intermediate feature is F ·
C, where C is our maximum disparity and F is a
multiplicative factor. The final global context output after
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Figure 9: Additional qualitative comparison on a NorthAmerica stereo pair. We observe a 46% reduction in residual bitrate compared to
Ballé with higher PSNR.

the convolutional layer is (F · C)×H/16×W/16, which
we reshape into a 4D volume: F × C × H/16 × W/16.
Hence our global context can be seen as an initial cost
volume (with an additional feature dimension), which we
will provide as input to our skip functions at each level of
our encoder/decoder.

Note that we have three levels of skip functions in both
the encoder/decoder, predicting cost volumes of dimensions
C × H/2 × W/2, C × H/4 × W/4, and C × H/8 ×
W/8 for the encoder and of dimensions C × H/8 ×

W/8, C × H/4 × W/4, and C × H/2 × W/2 for the
decoder. Since the disparity dimension remains fixed
regardless of spatial resolution, the lower resolution cost
volumes effectively have a greater receptive field than the
higher resolution volumes (ideally we would like the higher
resolution volumes to have a big receptive field but this
is subject to GPU memory limits). This also implies that
the disparity dimensions are not spatially aligned across
different spatial resolutions nor with our global context (at
the lowest spatial resolution H/16×W/16), so feeding our
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Figure 9: (Continued)

global context as is to each level doesn’t make sense.
Instead, we ensure that F is divisible by 3, and our global

context volume actually represents a concatenation of three
”sub” context volumes of dimensions F0 × C × H/16 ×
W/16, where F0 = F/3. Each sub-context volume is
mapped as an input to a skip function at a corresponding
resolution level in both the encoder/decoder (so one sub-
context volume is mapped to the skip function in both
the encoder and decoder at resolution H/8,W/8, etc.).
This allows each sub-context volume to represent a lower-
resolution feature representation to help predict a specific

cost volume at a particular resolution level, as opposed to
helping predict all cost volumes across all resolution levels.

A network diagram is shown in Fig. 13. We set F = 21
in our experiments. As mentioned in our experiments, we
set C = 32 for NorthAmerica and C = 64 for Cityscapes.
We set GroupNorm to have F groups, with C channels per
group.

Stereo Cost Volume If the input features to each skip
function are at level t − 1 with resolution r, denote the
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Figure 10: Input/Output disparity map, residual image, and camera image for a sample stereo pair on NorthAmerica (using our stereo
residual coding baseline).

corresponding sub-context volume from the global context
as dr. The task of predicting the cost volume used for
warping takes in dr, as well as ht−1

1 , ht−1
2 as input.

We concatenate ht−1
1 , ht−1

2 into a 2N ×Ht−1 ×W t−1

feature, and feed it through 2 2d convolutions, followed by
GroupNorm (with 4 groups per module) and ReLU after
each conv. The output feature has dimensions N ×Ht−1×
W t−1.

In another branch, we feed dr, the sub-context volume,
through an upsampling 3d conv. to match the spatial
resolution of ht−1

1 , ht−1
2 (which is Ht−1,W t−1), followed

by another 3d conv. Each 3d conv is also followed by
GroupNorm (1 group per module) and ReLU, and the
intermediate feature channel dimensions are C · F0. The
output feature has dimensions F0 × C × Ht−1 × W t−1,
and we collapse this back into a 2d feature representation:
(F0 · C)×Ht−1 ×W t−1.

We concatenate the outputs of both feature branches
and add 3 more 2d conv layers, with intermediate
feature dimension N , each except the last followed by
GroupNorm(4 groups each) and ReLU. The final cost
volume has dimensions C ×Ht−1×W t−1, with a softmax
layer applied over the disparity dimension for every 0 ≤
i, j ≤ Ht−1,W t−1.

A network diagram for predicting the cost volume is
given in Fig. 14.

Aggregation Function Our aggregation function ht
2 =

a(gt−1
2 ,ht−1

2 ) is fairly simple - since gt−1
2 and ht−1

2

have the same spatial resolution, we concatenate them
along the channel dimension. Then we apply a
downsampling/upsampling conv as part of the second
image’s encoder/decoder, as shown in Fig. 1 of the main
paper.

C.3. Architecture Details for Entropy Models

Hyper-encoder: Our ”hyper-encoder” derives the
hyperprior variables, z̄1, z̄2 from y1,y2. Note that we
pass the unquantized continuous representation y into the
hyper-encoder, not ȳ, the noisy representation produced
by the quantizer during training. Each y is fed through 3
convolution layers, with ReLUs following the first two and
the last two being downampling; then a quantizer is applied
to produce z̄. An illustration can be shown in Fig. 15.

Hyperprior Entropy Model: We follow [5] in designing
the factorized entropy model for the hyperprior -
specifically in modeling ci(z̄i;θθθz̄). In order to define a valid
cumulative density, ci(z̄i;θθθz̄) must map values between
[0, 1] and be monotonically increasing. The input z̄i and
the output must also be univariate (dimension = 1).

We set ci to be a two-step nonlinear function as follows:

ci(z̄i;θθθz̄) = f2 ◦ f1 (17)

where f1 : R1 → R3 and f2 : R3 → R1. The nature of
each fk is defined as follows:

fk(x) = gk(softplus(Hk)x+ bk)

g1(x) = x+ tanh(ak)� tanh(x)

g2(x) = sigmoid(x)

(18)

where Hk are matrices, bk and ak are vectors, and �
is elementwise multiplication. This formulation satisfies
the conditions to be a valid CDF. For more details and
justifications about this manner of designing a factorized
prior, see Appendix 6.1 in [5].

We use this same factorized prior formulation for
modeling our main image codes in our models without



Deep Residual Coding (Camera 1), Bitrate: 0.077, PSNR: 34.89

Deep Residual Coding (Camera 2), Bitrate: 0.032, PSNR: 35.95

Ours (Camera 1), Bitrate: 0.099, PSNR: 36.73

Ours (Camera 2), Bitrate: 0.024, PSNR: 35.80

Figure 11: Comparison between the reconstructions from the two cameras using our deep residual coding baseline as well as our stereo
model, for a Cityscapes stereo pair. The green box demonstrates where our residual baseline reconstruction (Cam 2) has sharper image
quality than our stereo model. The red boxes demonstrate where the residual baseline reconstruction (Cam 2) introduces artifacts that are
absent in our stereo model.
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Figure 12: Additional ablation study. For both datasets, we analyze the independent and combined effects of our skip functions (DispSkip)
and the conditional entropy on top of the single-image hyperprior model.
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Figure 13: Architecture diagram for producing the global context volume from ȳ1, with 3 subcontexts. Each subcontext is passed to the
two corresponding skip functions at that resolution level, one in the encoder and one in the decoder.

hyperpriors in our ablation study (Section 4.3 in the main
paper). For our IE models, we used the factorized prior
model for both image codes. For our CE0 models, we used
this factorized prior model for the first image code.

Image Codes Entropy Model: We now describe the
GMM-based conditional entropy model for the image
codes: ȳ1, ȳ2. We start with ȳ1. Recall that we
define p1,i(ȳ1,i|z̄1;θθθȳ1) = (q1,i ∗ u)(ȳ1,i), where q1,i =∑

k wikN (µik, σ
2
ik)). We predict w, µ, and σ as functions
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Figure 14: Architecture diagram for producing the cost volume from ht−1
1 , ht−1

2 , dr . The ⊕ symbol represents concatenating two tensors
along the channel dimension.

of z1 given θθθȳ1 : w(z̄1;θθθȳ1), µ(z̄1;θθθȳ1), σ(z̄1;θθθȳ1) - where
w, µ, and σ represent the vectors of all the individual
values wik, µik, σik. σ and µ have the same spatial
resolution as ȳ1 with up toK times the number of channels,
where K is the number of mixtures ((M · K) × H/16 ×
W/16). Moreover, to reduce the number of parameters and
help maintain spatial invariance, we assume that weights
are fixed per channel, so weights have dimensions (M ·
K) × 1 × 1. The network diagram is shown in Fig. 15,
and there are a few key details per branch. Namely, we
apply a ReLU to the last layer of σ(z̄1;θθθȳ1

) to keep standard
deviations positive. For weights, we apply a pooling layer
after the second conv to collapse the spatial dimension, then
a softmax per mixture to keep weights normalized.

We follow a similar process to model
p2,i(ȳ1,i|z̄2, ȳ1;θθθȳ2

) = (q2,i ∗ u)(ȳ2,i). However, the
network structure for predicting w, µ, and σ is slightly
different because z̄2, ȳ1 are not the same dimension.
Instead, we first upsample z̄2 to an intermediate value with
the same dimensions of ȳ1. Then we can concatenate this
intermediate value with ȳ1 across the channel dimension
and pass it through the convolutions. The convolutions
themselves are no longer upsampling, since the input is
at the same desired spatial resolution as the output. An
example for predicting σ is shown in Fig. 16.

D. Effect of Different Lossless Coders:

For lossless encoding, we compare our range coding [29]
implementation against Huffman coding and zlib [26]. We

find that range coding achieves a bitrate that is within 1-2%
of the Shannon entropy lower bound. As a comparison, our
Huffman coding implementation with a tuned chunk size
uses 35-50% more bits than the Shannon entropy. Finally,
the DEFLATE algorithm used in zlib (a combination of
LZ77 and Huffman) uses between 150%-200% more bits.
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Figure 15: Architecture diagram detailing the hyper-encoder (left) as well as the full entropy model of ȳ1 (right). We note that the input to
the hyper-encoder is y1 (the continuous representation before being fed to the quantizer), not ȳ1 (the noisy representation of y1 we apply
as part of the quantizer during training). The hyperencoder produces z̄1, which we then feed into the GMM entropy model.

C
on

v2
d:

 5
x5

, M
·K

, 1
x

R
eL

U

C
on

v2
d:

 5
x5

, N
, 1

x

R
eL

U

C
on

v2
d:

 5
x5

, N
, 1

x

R
eL

U

𝝈 (stddevs)

z2

y1

U
ps

am
pl

e 
(to

 s
pa

tia
l 

re
so

lu
tio

n 
of

 y
1

Figure 16: Architecture diagram illustrating how σ is predicted for ȳ2. The key difference is that ȳ1 is concatenated with an upsampled
z̄2 and the convolutions are no longer upsampling. The changes to predict µ,w are the same.




