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1. Proof of Corollary 1
Corollary 1. Let Pr and Pg be two distributions in X , a compact metric space. A linear and 1-Lipschitz constrained function
f∗ = Wx, is the optimal solution of max‖f‖Lip61Ex∼Pr

[f(x)] − Ex∼Pg
[f(x)]. Then all the singular values of the weight

matrix W are 1.
Proof: Proposition 1 in Gulrajani et al., Improved Training of Wasserstein GANs, Advances in Neural Information Pro-
cessing Systems, 5769-5779, 2017. has proven that the optimal solution to 1-Lipschitz discriminator function f∗ has gradient
norm 1 almost everywhere. In other words, f∗ is obtained at the upper bound of 1-Lipschitz constraint: ‖f(x1)− f(x2)‖ 6
‖x1 − x2‖.

Because f is a linear function: f(x) = Wx. The 1-Lipschitz constraint for f can be expressed as:

‖Wx‖ 6 ‖x‖ (1)

Equation 1 is equivalent to:
‖Wx‖2 6 ‖x‖2 (2)

and,
‖Wx‖2 = xTWTWx = xTV ΣV Tx (3)

where columns of V , [v1, · · · , vn] are eigenvectors of WTW , and diagonal entries of diagonal matrix Σ are eigenvalues of
WTW .

Taking y = V Tx, then
‖Wx‖2 = yT Σy = λ1y

2
1 + · · ·+ λny

2
n (4)

where λi is the i-th eigenvalue, and yi is the i-th element of y.
Because WTW is symmetric, V T = V −1, then

‖y‖2 = yT y = xTV V Tx = xTx = ‖x‖2 (5)

Finally, ‖Wx‖2 6 ‖x‖2 is equivalent to λ1y21 + · · ·+λny
2
n 6 y21 + · · ·+ y2n. We can see that the upper bound of 1-Lipschitz

constraint can be obtained only when all eigenvalues of WTW are 1. In other words, all the singular values of W are 1.
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2. Architecture and Optimization Settings
In this paper, we employ SN-GAN architecture, which is illustrated in Figure 1. The weight in the convolutional layer

is in the format [out, in, h, w], where out is the output channel, in represents the input channel, h and w are kernel
sizes. Particularly, there are 10 convolutional layers (layer 0 ∼ layer 9) in discriminator network, and CH in Figure 1(b)
corresponds to channel size of discriminator function in main text, where extensive experiments are conducted with different
settings of CH. All the experiments are conducted based on the following architecture. Image generation on STL-10 shares
the same architecture with that on CIFAR-10. Thus, images in STL-10 are compressed to 32 × 32 pixels, identical to
the resolution of images in CIFAR-10. The purpose is to to evaluate how different data affect mode collapse and spectral
distribution, regardless of the effect of architecture.

The optimization settings follow SN-GANs. To be specific, the learning rate is taken as 0.0002, the number of updates
of the discriminator per one update of the generator ncritic is 5, the batch size is taken as 64, and Adam optimizer is used as
the optimization with the first and second order momentum parameters as 0 and 0.9, respectively.

(a) Generator architecture (b) Discriminator architecture

Figure 1. Architecture of GANs.

3. Spectral Distributions
In Figure 2 ∼ Figure 6, we show the spectral distributions for different settings in layer 9. We can see that spectral

collapse and mode collapse always go side by side. In Figure 7 ∼ Figure 11, we show the spectral distributions of each layer
except layer 2 and layer 5. Because layer 2 and layer 5 act as the role of skip connection, and the intense correlation
between mode collapse and spectral distortion is not observed in layer 2 and layer 5.

(a) A8−128 (b) A16−128 (c) A32−128 (d) A64−128

(e) A128−128 (f) A256−128 (g) A512−128 (h) A1024−128
Figure 2. Spectral distributions in layer 9 for settings in group A. No mode collapse and spectral collapse is observed in group A.



(a) B8−64 (b) B16−64 (c) B32−64

(d) B64−64 (e) B128−64 (f) B256−64
Figure 3. Spectral distributions in layer 9 for settings in group B. Mode collapse and spectral collapse are observed in setting B64−64,
B128−64 and B256−64.

(a) C8−32 (b) C16−32 (c) C32−32

(a) C64−32 (b) C128−32
Figure 4. Spectral distributions in layer 9 for settings in group C. Mode collapse and spectral collapse are observed in all settings of
group C.

(a) D128−256 (b) D256−256 (c) D512−256
Figure 5. Spectral distributions in layer 9 for settings in group D. No mode collapse and spectral collapse is observed in group D.



(a) E16−128 (b) E64−128 (c) E256−128

(a) E256−64 (b) E256−32
Figure 6. Spectral distributions in layer 9 for settings in group E. Mode collapse and spectral collapse are observed in setting E256−64

and E256−32.

(a) layer 0 (b) layer 1 (c) layer 3 (d) layer 4

(e) layer 6 (f) layer 7 (g) layer 8 (h) layer 9
Figure 7. Spectral distributions (after 50k iterations) in each layer for settings in group A. No mode collapse and spectral collapse is
observed in group A.



(a) layer 0 (b) layer 1 (c) layer 3 (d) layer 4

(e) layer 6 (f) layer 7 (g) layer 8 (h) layer 9
Figure 8. Spectral distributions (after 50k iterations) in each layer for settings in group B. Mode collapse and spectral collapse are observed
in setting B64−64, B128−64 and B256−64.

(a) layer 0 (b) layer 1 (c) layer 3 (d) layer 4

(e) layer 6 (f) layer 7 (g) layer 8 (h) layer 9
Figure 9. Spectral distributions (after 50k iterations) in each layer for settings in group C. Mode collapse and spectral collapse are observed
in all settings of group C.



(a) layer 0 (b) layer 1 (c) layer 3 (d) layer 4

(e) layer 6 (f) layer 7 (g) layer 8 (h) layer 9
Figure 10. Spectral distribution (after 50k iterations) in each layer for settings in group D. No mode collapse and spectral collapse is
observed in group D.

(a) layer 0 (b) layer 1 (c) layer 3 (d) layer 4

(e) layer 6 (f) layer 7 (g) layer 8 (h) layer 9
Figure 11. Spectral distribution (after 50k iterations) in each layer for settings in group E. Mode collapse and spectral collapse are observed
in setting E256−64 and E256−32.



4. Statistics of D(x) and Discriminator Objective LD

In the main text, we primarily show the statistics of D(x) and discriminator objective LD for setting A128−128 and
B128−64. In Figure 12∼ Figure 13, we show the mean and variance ofD(x) andLD. To be specific, we feed the discriminator
function with generated data and data in the training set, and obtain the output of the discriminator objective, then we calculate
its mean and variance, finally we show their variation with i in Figure 12. To investigate the performance of discriminator
on test set, we monitor D(x)|x∼qtrain

and D(x)|x∼qtest , where qtrain, qtest represent the training and test set, respectively.
Then, we calculate the mean and variance, and show the variation with i in Figure 13.

In Figure 12, we can see that discriminator objective has a decreasing tendency with the increase of i. As we can see
in Figure 13, D(x)|x∼qtrain

and D(x)|x∼qtest diverge when i is excessively large. Thus, excessively increasing i potentially
leads to over-fitting, especially when i is taken as N . As we can see in Figure 13 (d) ∼ Figure 13 (f), D(x)|x∼qtrain and
D(x)|x∼qtest agree well, indicating that no over-fitting is observed in group B.

(a) A8−128 (b) A32−128 (c) A128−128

(d) B8−64 (e) B32−64 (f) B128−64 (g) D128−256
Figure 12. Mean and variance of LD .

(a) A8−128 (b) A32−128 (c) A128−128

(d) B8−64 (e) B32−64 (f) B128−64 (g) D128−256
Figure 13. Mean and variance of D(x).



5. Synthetic Images
We show some examples generated by SN-GANs and SR-GANs in Figure 14 ∼ Figure 22

Figure 14. Synthetic images.



Figure 15. Synthetic images.



Figure 16. Synthetic images.



Figure 17. Synthetic images.



Figure 18. Synthetic images.



Figure 19. Synthetic images.



Figure 20. Synthetic images.



Figure 21. Synthetic images.



Figure 22. Synthetic images.


