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Abstract

In this supplementary material, Section 1 presents more
additional quantitive results on ImageNet Validation set. We
report results when all approaches have access both to the
training data and the model parameters. Section 2 shows
the experimental results on the psychical world, which can
further extend our method to real-life application.

1. Additional Quantitative Results
In this section, we present qualitative results to show that

the proposed approach PD-UA is competitive with respect
to all those approaches which has access both to the training
data and the model parameters. The proposed PD-UA is
general, our model can directly access both the training data
and model parameters.

For the pseudo data prior, we use the Gaussian distri-
bution whose mean µ is equal to the mean of the training
data and variance δ is such that 99.9% of the samples lie
in [0, 255], the dynamic range of input. Therefore, the ob-
jective function of the virtual Epistemic uncertainty in Eq.5
can be rewritten as follows:
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where ‖δ‖p < ε, G is the Gaussian distribution that the
model can access. Beside, similar to [4], the Gaussian dis-
tribution can be easily replaced with the actual data distribu-
tion X , which can further improve the attack performance.
And the objective function of the virtual Epistemic uncer-
tainty can be rewritten as follows:
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,

(S.2)
where ‖δ‖p < ε.

Therefore, these two new objective functions (Eq.S.1 and
Eq.S.2) can be integrated into the final objective function in
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Table A. Fooling rate results for UAPs learned with training data.
Methods VGG16 VGG19 ResNet50

classical UAP 77.80 80.80 81.39
GD-UAP with training data 72.80 67.60 56.40

singular-fool [1] 52.00 60.00 44.00
PD-UA with pseudo data 70.69 64.98 63.50
PD-UA with training data 76.60 73.30 65.80

Eq.8, which can also be optimized via Algorithm 1. Table
A shows the quantitative results on ImageNet validation set.

We add a new compared method [1], termed singular-
fool, that also generate the textural-like universal adver-
sarial perturbation. Note that, singular-fool crafts UAP
with small-scale training data (N < 100), and we test our
method in the same setting for a fair comparison. We use 49
training images that are released in [1]1, to find the UAP for
both GD-UAP and PD-UA. The results show that PD-UA
with a pseudo data prior is better than the singular-fool. PD-
UA can achieve a similar fooling rate when compared with
the classical UAP, which however requires thousands of im-
ages to obtain such results. In addition, for VGG-based
CNNs, PD-UA achieves the similar attacking performance
comparing to the classical UAP [3], yet classical UAP need
access to 10, 000 training samples.

Moreover, we compare our PD-UA with the JPEG
compression-based attack method [5] that is a simple
image-agnostic attacking method. We use a pre-trained
ResNet50 and test the classification accuracy on the first
1,000 images of the ImageNet validation set. The JPEG
compression (with 75% quality) achieves 66.3% Top-1 ac-
curacy, while our PD-UA achieves 32.2%. Again, PD-UA
is much better (here, a smaller accuracy means the model is
more vulnerable to the adversarial attack).

Finally, we also visualize the universal adversarial per-
turbations form different methods, as shown in Figure
D. We observe that singular-fool, GD-UAP, and PD-UA
present interesting visual patterns that are similar to the tex-
tural patterns. Besides, GD-UAP and PD-UA have a very

1https://github.com/KhrulkovV/singular-fool
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Table B. The attack performance on VGG-16. “wpp” means that the perturbation are generated via objective function Eq.S.1 and “wap”
means that the perturbation are generated via objective function Eq.S.2. “prob” means that the probability of the category output.

Clean wpp wap
label prob label prob label prob

example 1 long-borned beetle 0.943 cricket 0.481 shopping basket 0.674
example 3 giant panda 0.999 lesser panda 0.267 monitor 0.700
example 4 pier 0.965 dome 0.246 mosquito net 0.3587
example 6 football helmet 0.771 mountain bike 0.755 backpack 0.306

(a) classical UAP (b) singular-fool

(c) GD-UAP (d) PD-UA

Figure A. The visualization of UAPs based on the backbone VGG-
16, when the methods access to both training data and model pa-
rameters. (Best view in color.)

similar structure of the generated UAP, both of which con-
tains a pattern of the building. However, the rules of such
a pattern’s arrangement in PD-UA is different from GD-
UAP’s, because PD-UA is constrained via the textural cir-
cle prior that significantly brings the performance improve-
ment. As a conclusion, PD-UA does help to craft robust
universal perturbation, which improves the white-box at-
tacking performance.

2. Real-life Application of the PD-UA

To strength our attack method, this section shows the at-
tack results on many real-life computer vision system, i.e.,
mobile image recognition and Google Image. We randomly
select six images from the ImageNet Validation set, whose
examples are shown in Figure B.

Figure B. The six images are selected for showing the attack re-
sults on a real-life application.

First, we computed the adversarial examples for the stan-
dard VGG-16 classifier using two different objects, i.e.,
with pseudo data prior Eq.S.1 and with actual data distri-
bution Eq.S.2. We directly input these images (both origi-
nal clean images and adversarial images) into the VGG-16
classifier and out the Top-1 category, whose results are re-
ported in Table B. We observe that PD-UA attack all the
images successfully. Note that the adversarial example 4
that is crafted for “wpp”, the Top-1 category is “dome” that
has a similar textural style with the UAP that is shown in
Figure 4 (e).

Second, we have tested our PD-UA to fool a publicly
available TensorFlow camera demo 2. Using the same set-
ting as [2], we first print a clean image selected from Im-
ageNet, and generate its adversarial image for the testing.
Then, we use a Demo App to classify them, which is shown
in Figure C. The clean image (a) is recognized correctly
as a “sandpiper” when being perceived through the camera,
while adversarial image (b) with PD-UA is misclassified.
Moreover, we show more results based on our PD-UA that
are generated via the two objective functions above. Differ-
ent from Figure C, we show the clean image and adversarial

2https://github.com/tensorflow/tensorflow/tree/
master/tensorflow/examples/android
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Figure C. Demonstration of the attack on a phone app for image
classification using physical adversarial examples. The perturba-
tion is crafted via VGG-16. Enlarge to see details.

image on the computer screen and then use the Demo App
to classify them, which is shown in Figure D.

Finally, we show the attack results on a real-world image
retrieval system, i.e., Google Image. The first row shows the
retrieval results along with original clean image, and the last
two rows show the retrieval results along with two different
UAPs. As the first column shown in Figure E, PD-UA can
also realize the cross-task attack, i.e., UAP that is crafted
from classification model can also attack image retrieval
system. Note that, the retrieval results of example 4 are the
same. We compare the clean image with two adversarial
images, we observe that the structure of the bridge is very
clear, which causes the texture changes to not reduce the in-
formation of this image. Similar results emerged in Figure
D (d), where the structure of the castle is very clear. The
attack results have demonstrated that the proposed method
can generate universal perturbations to fool the real-world
search engine.
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(a) Example 1.

(b) Example 3.

(c) Example 4.

(d) Example 3.

(e) Example 6.
Figure D. Demonstration of the attack on a phone app for image
classification using physical adversarial examples. The perturba-
tion is crafted via VGG-16. Enlarge to see details.



Figure E. Example retrieval results on Google Images. Enlarge to see details.


