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1. Algorithm
Algorithm 1 gives the formal specification for the second integration step described in our paper.

Algorithm 1: Second Integration Step.
Result: Pseudo Labels yPseudo
OScene Bounds = {Ceil,Floor,Wall}
OSmall = {Books,Paint}
foreach Category c ∈ C do

Ac =
∑

Pixel i ŷCAM,i,c > τCAM
end
foreach Contour γ∗k ∈ Γ∗ do

// Add Maximum Likelihood candidate Pk =
{

arg maxc∈C
∑
i∈γ∗k

ŷCAM,c,i

}
∪OSmall

// Compute confidence features
Ek = ∅
foreach Category c ∈ Pk do

pk,c = maxi∈γ∗k ŷCAM,i,c

rk,c =

∑
i∈γ∗

k
ŷCAM,i,c>τCAM

#γ∗k
// Check if thresholds are met
switch yStep 1,k do

case is ”Unknown” do
τp = τp,Unknown
τr = τr,Unknown

end
case is in OScene Bounds do

τp = τp,Scene Bounds
τr = τr,Scene Bounds

end
otherwise do

τp = τp,Other
τr =, τr,Other

end
end
if pk,c > τp and rk,c > τr then

Ek = Ek ∪ {c}
end

end
if Ek = ∅ then
∀i ∈ γ∗k : yPseudo,i = yStep 1,k

else
∀i ∈ γ∗k : yPseudo,i = arg minc∈Ek Ac

end
end



2. Unsupervised Depth Restoration and RANSAC Scale Recovery for Depth Adaptation
2.1. RANSAC Scale Recovery

During depth adaptation, to simulate sensor noise correctly, we apply min-max normalization to the depth map. Adaptation
results and comparisons are shown in Fig.1.

RGB Depth Depth Simulation[1] Ours (raw w/o norm η) Ours (raw) Ours (inpainted)

Figure 1. Visualization of our sensor noise simulation model.

The resulting depth map is correct up to an unknown scaling factor. To restore the depth map completely, besides utilizing
the restoration model R which is able to transfer sensor depth map from the real to the synthetic, clean domain, performing
tasks such as hole filling and denoising, scale recovery is indispensable. Scale is the relationship between different distances
in the map and how these distances relate to the real world. By intuition, we can recover scale by simply aligning [−1, 1] with
original minimum and maximum in depth map. However, this way we would take only two extreme values, the closest and
the farthest point, to estimate the scale. This introduces a large variance, hence we propose to align restored normalized depth
prediction with sensor depth map via random sample consensus (RANSAC) [2] under the assumption that most values in the
sensor depth map are correct. After pairing each normalized value in [−1, 1] with the absolute value at the corresponding
spatial position, RANSAC is performed to establish a relationship between the map units and real distance by estimating the
best scaling factor γ and bias β that fit the images as shown in Fig.2 :

γ, β = RANSAC(R(η(xReal,D)), xReal,D) (1)

xRestore,D = γ ×R(η(xReal,D)) + β. (2)

2.2. Dataset

Since aligned sensor depth and ground truths are rare and expensive, we evaluate our model on a synthetic noise simulation
dataset. The ICL-NUIM dataset [5] is a benchmark for the evaluation of visual odometry, 3D reconstruction and SLAM
algorithms. It is a collection of handheld RGB-D camera sequences within synthetically generated environments. Care has
been taken to simulate typically observed real-world artefacts in the synthetic imagery by modelling sensor noise in both RGB
and depth data [5]. While this dataset is designed for the tasks mentioned above, we utilize it to evaluate the performance
of depth restoration. We sample one image per 10 frames from the “Living Room lr kt2” set (89 frames in total) as our
evaluation set.

2.3. Evaluation Matrix

To evaluate the performance of our restoration, we follow related works and compare the results in terms of root-mean-
squared error (RMSE). RMSE between the computed depth map xRestore,D(u, v) and the ground truths map xSyn,D(u, v)
is defined as:

(3)RMSE = (
1

N

∑
u,v

|xRestore,D(u, v)− xSyn,D(u, v)|2)
1
2 .



Figure 2. Scale alignment with RANSAC.

Additionally, bad τ indicates percentage of pixel whose absolute difference exceeds τ :

bad τ =
1

N
×
∑
u,v

(|xRestore,D(u, v)− xSyn,D(u, v)| ≥ τ). (4)

2.4. Ablation Study

Table 1 presents several ablation studies to show the advantages of our alignment and training method. Training the model
without min-max normalization performs worse as discussed.

Table 1. Ablation studies for our alignment and training method. These results were obtained using the sampled 89 frames from the
ICL-NUIM dataset.

Model Normalization Alignment RMSE Bad 2.5 Bad 5 Bad 10

Our Yes Minmax 10.57 72.16 53.19 29.09
Ours No RANSAC 3.69 23.59 7.52 2.16

Ours (Final) Yes RANSAC 2.89 13.29 3.94 1.57

2.5. Results

In this section, we compare our proposed method to other state-of-the-art depth restoration methods, i.e., guided filter [6],
the joint static and dynamic filtering (SDF) method [4], mutual-structure filtering [10] and dynamic guidance learning [3].
Moreover, all depth maps are quantized from [0,65535] to [0,255], since some related works only accepted 8-bit depth maps.
For a fair comparison, all methods are evaluated without tuning parameters on the ICL-NUIM dataset, kernel sizes for related
works are adjusted to yield best results. We report results for quantizing after as well as before restoration. Quantization to
[0, 255] in Table 2 refers to applying quantization before restoration, i.e., process an 8-bit depth map, or applying restoration
directly to the 16-bit raw depth map and quantize afterward. Obviously, the order of quantization and restoration has only
effect. All results are reported in terms of RMSE. Fig. 3 gives visual examples of the restoration results on the ICL-NIUM
dataset and Fig. 4 highlights where bad pixels occur.

Our approach outperforms state-of-the-art restoration methods on the ICL-NIUM dataset because we are able to restore
depth map especially some large holes in consideration of the sensor noise model and process images using a larger receptive
field. Most state-of-the-art approaches are not able to fill large holes in the data, leading to a higher bad pixel percentage
for large τ and thereby to a higher RMSE. We have adjusted the kernel sizes of those traditional approaches to enlarge
their receptive fields, however they were not designed for that purpose and are obviously not as powerful as neural networks.
Nevertheless, one of the main issues for our method is that the shapes of objects and flat surfaces may sometimes be deformed



Table 2. Comparison of state-of-the-art depth restoration methods. These results were obtained using the sampled 89 frames on ICL-NUIM
dataset.

Quantization to [0,255] RMSE Bad 2.5 Bad 5 Bad 10before after

Raw 5.19 7.61 5.72 3.75
SDF[4]

√
4.66 8.03 4.47 2.91

SDF[4]
√

4.63 7.40 4.33 2.86
Dynamic Guidance[3]

√
4.36 8.85 4.80 2.78

Mutual-Structure[10]
(medfilter r=7)

√
3.89 7.77 3.54 2.01

Guided Filter[6] (r=15)
√

3.17 20.35 8.24 2.14
Guided Filter[6] (r=15)

√
3.19 20.33 7.03 1.92

Ours (Final)
√

2.92 11.84 4.16 1.60
Ours (Final)

√
2.89 13.29 3.91 1.57

RGB GT SDF Dynamic Guidance Mutual-Structure Ours (RANSAC)

Figure 3. Visualization of state-of-the-art depth restoration methods.

RGB Raw SDF Dynamic Guidance Mutual-Structure Ours (RANSAC)

Figure 4. Bad pixel vizualization of state-of-the-art depth restoration methods given τ = 5.



RGB Raw Mutual-Structure Ours

Figure 5. Depth restoration on real dataset (without scale alignment yet). It is shown that our approach is more capable of handling large
hole filling.

as our method was trained without paired image translation or guidance by RGB images. Hence, worse bad pixel percentage
is obtained when τ is set to a small value. Fig.5 shows our restoration result on real data from SUN RGB-D dataset [11].



3. Confidence Threshold for Adapted Scene Parsing Network
As mentioned in the proposed integration mechanism, to remove results with low confidence from the synthetic-to-real

adaptation in the first integration step, we apply a Softmax and a threshold τAdapted to the output of SPada(XReal,D).
Fig.6 supports the intuition that global accuracy (GA) and mIoU are positively correlated with Softmax’s confidence. Since
small thresholds lead to imprecise results and large threshold results in a low coverage ratio, τAdapted = 0.6 was chosen
by experiment. After adopting a winner-take-all mechanism based on the histogram of categories within contours to correct
wrong or uncertain regions, the high confidence result may effectively act as pseudo-ground truth within our learning process.

Figure 6. Cover ratio versus Performance for Adapted Scene Parsing Model SPada over different confidence thresholds τAdapted. Global
Accuracy (GA) and mIoU are evaluated only over those data points that exceed the given threshold.



4. More Visualizations of our Proposed Method
Visualizations of the integration mechanism are shown in Fig.7. In addition, more comparison examples are shown in

Fig. 8, 9, and 10. Lastly, we have claimed that the performance of our proposed method may be underestimated due to some
ground truth labeling errors. Examples supporting this are shown in Fig. 11.

Figure 7. Visualization of each stage of the proposed integration mechanism along with heat maps for several categories. Note that the
background for ground truth (GT) is incorrectly annotated as it’s missing most parts of the book shelf, while our own method captures
those parts.



RGB GT Supervised CYCADA Ours-Depth Ours-Full Ours-Full (UCM)

Figure 8. Visualization of results of our proposed method and comparisons to supervised and other transfer learning approaches. Last column
is shown by overlaying RGB images with our predictions.



RGB GT Supervised CYCADA Ours-Depth Ours-Full Ours-Full (UCM)

Figure 9. Visualization of results of our proposed method and comparisons to supervised and other transfer learning approaches. Last column
is shown by overlaying RGB images with our predictions.



RGB GT Supervised CYCADA Ours-Depth Ours-Full Ours-Full (UCM)

Figure 10. Visualization of results of our proposed method and comparisons to supervised and other transfer learning approaches. Last
column is shown by overlaying RGB images with our predictions.



RGB GT Supervised CYCADA Ours-Depth Ours-Full Ours-Full (UCM)

Figure 11. Examples with incorrect or missing ground truth. Last column is shown by overlaying RGB images with our predictions.



5. Computational Complexity Reduction
Reducing computational complexity is important to facilitate mobile scene parsing applications, for example for au-

tonomous agents. We apply weight and activation quantization to our network to evaluate its applicability in environments
with little computational resources.

5.1. Weight Quantization

In order to evaluate the impact of low bit-width allocations on SUN RGB-D dataset, we implement different quantization
methods originally developed for classification. Furthermore, the bit-width decay training procedure from [12] (based on
[13]) for the scene parsing task is implemented and compared. In the first step, activation is held at full precision and weight
quantization is explored, i.e., (W,A) = (kw, 32). All models are fine-tuned from full precision models and trained with same
hyperparameters. The results are reported in Fig. 12. We observe that the performance of linear quantization degenerates
significantly with decreasing bit-width, which corresponds to our intuition. While the 8-bit model performs almost the same
as the full-precision model, decreasing bit-width from 4-bit to less incurs a sharp performance drop. Binarized methods
including BNN [7], XNOR [9], DoReFa [13] on the other hand reduce this drop to 3.4% of mIoU when compared to full
precision model. We chose to use ternary quantization to further decrease the performance loss. Extending from TTQ [8]
yielded an mIOU of 41.73%, achieving almost the same performance as TTQ with only a single scaling factor and 1.4%
of performance loss compared to the 8-bit model. TTQ(1st layer) indicates that ternarizing all layers inclusive of the first
layer results in degradation. [13] and [12] achieve mIOU of 40.19% and 41.07% respectively, which further discussion will
be given later.

Figure 12. Comparison of weight quantization given activation is held at full precision (32-bit). Ternary weights are marked as 1.5-bit.

5.2. Activation Quantization

Note that activations, different from weights, which are known beforehand, are unbounded and may have significantly
larger ranges. In order to constrain a convolutional neural network to have ternary weights and low bit-width activations, we
need to retrain the network and enforce the activations to lie in the [0, R] through the clipping function. R = 4 is chosen



based on our experimental results.

Clip(z) =


0, for z ≤ 0

z, for 0 < z < R

R, for z ≥ R
(5)

Thereafter, linear Ncode bits codebook quantization is applied by equally dividing the range into 2N sections.

XQ =
R

2bits − 1
× round((2bits − 1)

Clip(X, 0, R)

R
+ 0.5) (6)

The weights are held at full precision and activation quantization is explored by turn as demonstrated in Fig. 13. The methods
include of linear quantization, logarithmic quantization and codebook quantization with different clipping ranges R, i.e.
(W,A,R) = (32, ka, R). It is observed that for a wider clipping range, accuracy can be maintained for less quantization,
ka = 8 for instance. However, low bit quantization such as ka = 2, large R may lead to significant loss. Hence, different
quantization methods and (ka, R) combinations were evaluated around 3 and 4 bits. By experiment, codebook quantization
maintains a higher accuracy for a low bit-width since codebook quantizations are applied by quantizing the index so as to
preserve higher bits for weights. To sum up, R = 4 and ka = 4 bits is able to achieve performance without loss.

Figure 13. Comparison of activation quantization given weights maintain full precision.

5.3. Activation Quantization for Ternary Weights

In accordance with the experiments above, a serious mIOU drop is observed between 3-bit and 4-bit. We further experi-
ment on non-uniform bit width. As residual connections often cost more bandwidth and dilated convolutions play a critical
role, we quantize the I/O of each block of layers to 3 bits while others remain at 4 bits (Fig. 14(a)). Nevertheless, the com-
putation of these convolutional layers is still carried out using the actual values. We transform the computation from those
actual values into the codebook domain, including the learned parameters in batch normalization layers. We can thereby
accomplish the calculation by merely accumulating the index of the codebook. Moreover, to align activations with different
bit-width in different layers, we choose the size of the codebook Ncode = 8 for 3 bits and Ncode = 15 (instead of 24) for
others (Fig. 14(b)). By combining this process with weight ternarization, the overall proposed quantization procedure can be



(a) Illustration of I/O of blocks and inner blocks. (b) Bit-width alignment for 3- and 4-bit.

Figure 14. Bit-width alignment for I/O of blocks and inner blocks.

Figure 15. Overall quantization procedure.

expressed with exact 4−bit addition followed by a smaller number of multiplications in the batch normalization as shown in
Fig. 15.

Finally, we evaluate non-uniform activation quantization on the weight ternarization network as shown in Fig. 16, i.e.
(W,Ai/o, Ainner, R) = (1.5, ko, ki, 4). “Uniform” denotes that all layers are quantized with same bit-width. It is observed that
the performance drop occurs at ki = ko = 3. Hence, we attempt to quantize the I/O of each block and the inner layers at
different bit-widths. As mentioned, with residual connection often costing more bandwidth and storage, we quantize I/O to
lower bits width and others to higher. “ki = 4(aligned)” is our final result, which aligns activations with 3-bit and 4-bit in
different layers, which yields an mIOU of 41.57%, nearly lossless when compared to the full precision activation network.

5.4. Results

Table 3 shows our class-wise quantization results. It can be observed that most performance degeneration occurs in
categories that are more difficult to classify. In SUN RGB-D, we observe that for classes which are less confident in pseudo
ground truth such as “books” and “object”, our result is worse than its 32- bit counterpart (50.26 % and 11.6 % relative
mIoU loss, respectively). The observation corresponds to our intuition that a low bit-width quantized network is usually less
powerful and thus harder to tolerate faults on training data. Visualizations of our quantization results (with UCM alignment)
are shown in Fig. 17.

From a computing resource perspective, the results are shown in Table 4. Although 1.8% mIoU drop occurs, activation
memory bandwidth is reduced 8.2×. Furthermore, since 53.24% of parameters is zero, only 1.8G 4-bit additions are required
and the memory consumption of parameters is reduced by 22× after Huffman coding. Table 5 compares our result to state-
of-the-art scene parsing quantization works. 41.07% mIOU is achieved by applying bit-width decay by fine tuning k-bit



Figure 16. Comparison of both weight ternarization and activation quantization with R = 4.

Table 3. Comparison of models with and without quantization.

Input bed books ceil chair floor furn. objs. paint sofa table tv wall window mIOU mIoU
(w/o book & obj)

Full Precision 52.06 23.52 50.03 49.44 81.00 36.39 25.17 28.09 44.64 47.88 19.68 69.69 38.25 43.53 47.01

Full Precision
+UCM Refinement 54.07 21.94 47.54 50.37 81.10 36.56 24.75 30.67 46.23 49.15 17.76 70.19 39.00 43.80 47.51

Ternary weight
+ (3,4) bits aligned activation 49.65 11.70 52.90 46.31 78.33 36.89 22.25 27.74 43.22 46.70 19.79 68.66 36.29 41.57 46.04

Ternary weight
+ (3,4) bits aligned activation

+UCM Refinement
53.62 7.66 52.82 47.57 79.23 37.27 21.48 31.03 45.54 47.75 18.88 69.86 36.82 42.27 47.31

network from (k + 1)-bit network for setting decay rate to 1 which may preserve a better performance compared to DoReFa
but is time-consuming. It is shown that our result outperforms them in performance as well as training time consumption
with even less bits.

Table 4. Result of model complexity along with required parameter memory and activation memory bandwidth after quantization.

mIOU Parameter Activation Operation

Full Precision 43.53 7.82 MB 85.88 MB
3.91 GMAC

(32 bits)

Ours 41.57
365.6 KB

(+huffman) 10.51 MB
1.8G ADD+23.3M MUL

(4 bits fixed point)



RGB GT Before Quantization After Quantization

Figure 17. Visualization of our quantization results (with UCM alignment) on SUN RGB-D test set.

Table 5. Comparison of our method and state-of-the-art scene parsing quantization methods.

mIoU Quantize Epoch bit-width (W-A) size compressed (W-A)

Full Precision 43.53 - 32-32 1×-1×
DoReFa [13] 40.19 100 2-32 16×-N/A

Wen et al. 2016 [12] 41.07 240 2-32 16×-N/A
Ours 41.57 70 1.5-3.5 21.9×-8.2×
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