
A. Appendix
A.1. Dataset details

We collected a total of 14M font characters (µ =
226, 000, � = 22, 625 per class) in a common format
(SFD), while retaining only characters whose unicode id
corresponded to the classes 0-9, a-z, A-Z. Filtering by uni-
code id is imperfect because many icons intentionally de-
clare an id such that equivalent characters can be rendered
in that font style (e.g.: ⇤ sometimes declares the unicode
id normally reserved for 7).

We then convert the SFD icons into SVG. The SVG
format can be composed of many elements (square,
circle, etc). The most expressive of these is the path
element whose main attribute is a sequence of commands,
each requiring a varying number of arguments (lineTo: 1
argument, cubicBezierCurve: 3 arguments, etc.). An
SVG can contain multiple elements but we found that SFD
fonts can be modelled with a single path and a subset of its
commands (moveTo, lineTo, cubicBezierCurve,
EOS). This motivates our method to model SVGs as a single
sequence of commands.

In order to aid learning, we filter out characters with over
50 commands. We also found it crucial to use relative po-
sitioning in the arguments of each command. Additionally,
we re-scale the arguments of all icons to ensure that most
real-values in the dataset will lie in similar ranges. This
process preserves size differences between icons. Finally,
we standardize the command ordering within a path such
that each shape begins and ends at its top-most point and
the curves always start by going clockwise. We found that
setting this prior was important to remove any ambiguity re-
garding where the SVG decoder should start drawing from
and which direction (information which the image encoder
would not be able to provide).

When rendering the SVGs as 64x64 pixel images, we
pick a render region that captures tails and descenders that
go under the character’s baseline. Because relative size dif-
ferences between fonts are still present, this process is also
imperfect: zoom out too little and many characters will still
go outside the rendered image, zoom out too much and most
characters will be too small for important style differences
to be salient.

Lastly, we convert the SVG path into a vector format
suitable for training a neural network model: each character
is represented by a sequence of commands, each consist-
ing of tuples with: 1) a one-hot encoding of command type
(moveTo, lineTo, etc.) and 2) a normalized represen-
tation of the command’s arguments (e.g.: x, y positions).
Note that for this dataset we only use 4 commands (includ-
ing EOS), but this representation can easily be extended for
any SVG icon that use any or all of the commands in the
SVG path language.

A.2. Details of network architecture
Our model is composed of two separate substruc-

tures: a convolutional variational autoencoder and an auto-
regressive SVG decoder. The model was implemented and
trained with Tensor2Tensor [58].

The image encoder is composed of a sequence of blocks,
each composed of a convolutional layer, conditional in-
stance normalization (CIN) [9, 43], and a ReLU activation.
Its output is a z representation of the input image. At train-
ing time, z is sampled using the reparameterization trick
[30, 49]. At test time, we simply use z = µ. The image de-
coder is an approximate mirror image of the encoder, with
transposed convolutions in place of the convolutions. All
convolutional-type layers have SAME padding. CIN layers
were conditioned on the icon’s class.

Operations Kernel, Stride Output Dim
Conv-CIN-ReLU 5, 1 64x64x32
Conv-CIN-ReLU 5, 1 32x32x32
Conv-CIN-ReLU 5, 1 32x32x64
Conv-CIN-ReLU 5, 2 16x16x64
Conv-CIN-ReLU 4, 2 8x8x64
Conv-CIN-ReLU 4, 2 4x4x64

Flatten-Dense - 64

Table 1: Architecture of convolutional image encoder con-
taining 416, 672 parameters.

Operations Kernel, Stride Output Dim
Dense-Reshape - 4x4x64

ConvT-CIN-ReLU 4, 2 8x8x64
ConvT-CIN-ReLU 4, 2 16x16x64
ConvT-CIN-ReLU 5, 1 16x16x64
ConvT-CIN-ReLU 5, 2 32x32x64
ConvT-CIN-ReLU 5, 1 32x32x32
ConvT-CIN-ReLU 5, 2 64x64x32
ConvT-CIN-ReLU 5, 1 64x64x32

Conv-Sigmoid 5, 1 64x64x1

Table 2: Architecture of convolutional image decoder con-
taining 516, 865 parameters.

The SVG decoder consists of 4 stacked LSTMs cells
with hidden dimension 1024, trained with feed-forward
dropout [53], as well as recurrent dropout [62, 51] at 70%
keep-probability. The decoder’s topmost layer consists of a
Mixture Density Network (MDN) [3, 15]. It’s hidden state
is initialized by conditioning on z. At each time-step, the
LSTM receives as input the previous time-step’s sampled
MDN output, the character’s class and the z representation.
The total number of parameters is 34, 875, 272.



A.3. Training details
The optimization objective of the image VAE is the log-

likelihood reconstruction loss and the KL loss applied to z
with KL-beta 4.68. We use Kingma et al’s [29] trick with
4.8 free bits (0.15 per dimension of z). The model is trained
with batch size 64.

The SVG decoder’s loss is composed of a softmax cross-
entropy loss between the one-hot command-type encod-
ing, added to the MDN loss applied to the real-valued ar-
guments. We found it useful to scale the softmax cross-
entropy loss by 10 when training with this mixed loss. We
trained this model with teacher forcing and used batch size
128.

All models are initialized with the method proposed by
He et al. (2015) [17] and trained with the Adam optimizer
with ✏ = 10�6 [26].

A.4. Visualization details
The dimensionality reduction algorithm used for visual-

izing the latent space is UMAP [39]. We fit the activations
z of 1M examples from the dataset into 2 UMAP compo-
nents, using the cosine similarity metric, with a minimum
distance of 0.5, and 50 nearest neighbors. After fitting, we
discretize the 2D space into 50 discrete buckets and decode
the average z in each grid cell with the image decoder.

A.5. Samples from generated font sets
Figures 1, 4, 5, 7 and 9 contained selected examples to

highlight the successes and failures of the model as well
as demonstrate various results. To provide the reader with
a more complete understanding of the model performance,
below we provide additional samples from the model high-
lighting successes (Figure 10) and failures (Figure 11). As
before, results shown are selected best out of 10 samples.



Figure 10: More examples of randomly generated fonts. Details follow figure 3.

Figure 11: Examples of poorly generated fonts. Details follow figure 3. Highly stylized characters clustered in a high-
variance region of the latent space z. Samples from this region generate poor quality SVG fonts. See Section 4.5 for details.


