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1. Introduction
This supplementary material includes the following con-

tents:

• Extension of IndexNet to image classification. We
evaluate IndexNet on the CIFAR-10 and CIFAR-100
datasets [8];

• Extention of IndexNet to monocular depth prediction.
The NYUv2 dataset [13] is used;

• Extention of IndexNet to scene understanding. We
evaluate IndexNet on the SUN RGB-D dataset [15];

• Further visualizations of learned index maps;

• Further qualitative results on the Composition-1k test-
ing set and the alphamatting.com online benchmark;

• Further ablation study supporting the normalization
design in IndexNet.

• Some failure cases of image matting.

In following experiments, ‘Context’ is always included in
IndexNet.

2. Image Classification
Here we extend IndexNet to the task of image classifica-

tion. LeNet [9], MobileNet [6] and VGG-16 [14] are cho-
sen as our backbones. We conduct experiments on these
architectures with/without IndexNet on the CIFAR-10 and
CIFAR-100 datasets. Note that, since models for image
classification do not have upsampling stages, we only ap-
ply the IP operator. All networks are trained from scratch
for 160 epochs. We set the batch size to 128 and use the
standard SGD for optimization. The initial learning rate is
set to 0.1, and reduced by ×10 at the 80-th epoch and the
120-th epoch. As what can be seen in Table 1, IndexNet can
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Method IndexNet CIFAR-10 CIFAR-100
LeNet – 75.47 39.34
LeNet + IP Nonlinear HIN 77.65 41.65
LeNet + IP O2O Linear DIN 77.73 40.34
LeNet + IP M2O Nonlinear DIN 77.54 41.74
MobileNet – 90.72 67.93
MobileNet + IP Nonlinear HIN 91.25 70.18
MobileNet + IP O2O Linear DIN 90.68 69.32
MobileNet + IP M2O Nonlinear DIN 90.49 70.19
VGG-16 – 93.76 72.93
VGG-16 + IP Nonlinear HIN 93.96 73.37
VGG-16 + IP O2O Linear DIN 94.09 73.02
VGG-16 + IP M2O Nonlinear DIN 94.00 73.01

Table 1: Accuracy (%) on the CIFAR-10 and CIFAR-100 image
datasets.

generally bring 1% ∼ 2% improvements when the com-
plexity of the problem increases or the model capacity is
low (LeNet and MobileNet). However, the improvement
becomes marginal with increased model capacity (VGG-
16) or reduced problem complexity (CIFAR-10). A pos-
sible explanation is that the training loss converges rapidly
so that no informative gradient signal is backpropagated to
optimize IndexNet.

3. Monocular Depth Prediction
Here we demonstrate the effectiveness of IndexNet on

the task of monocular depth prediction (metric depth). A
ResNet-50 based architecture proposed recently by [7] is re-
garded as our baseline. We compare the performance of ar-
chitectures with/without IndexNet on the NYUDv2 dataset.
The original architecture and our modified architecture are
shown in Fig. 1. Note that, the only modification is to re-
place all the bilinear upsampling in the decoder (D) and
multi-scale feature fusion (MFF) modules with IndexNet
and the indexed upsampling (IU) operator. These models
are trained with a batch size of 10 for 20 epochs. We start
with a learning rate of 0.0001 and divide it by ×10 every
5 epochs. We use the following measures to quantify the
performance:
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Figure 1: The schematic diagram of the depth estimation network proposed by Hu et al. [7] (left) and its modified version with IndexNet
(right).

Method IndexNet RMS REL log10 δ < 1.25 δ < 1.252 δ < 1.253

Re-implementation of Hu et al. [7] — 0.558 0.129 0.055 0.837 0.968 0.992
Hu et al. [7] + IU Nonlinear HIN 0.553 0.128 0.055 0.841 0.968 0.991

Table 2: Results on the NYUDv2 dataset. For RMS, REL and log10, lower is better. For δ < 1.25, δ < 1.252 and δ < 1.253, higher is
better. The best performance is boldfaced.

Figure 2: Learning curves of RMS on the NYUDv2 dataset.
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Experimental results are reported in Table 2 and Fig. 3.
From Fig. 3, we can see that IndexNet improves the per-
formance of baseline, especially on capturing edges. The
training process of the modified architecture is also more
stable than the baseline, as shown by the learning curves of
RMS in Fig. 2.



Figure 3: Depth prediction results on the NYUv2 dataset. From left to right, the original image, ground-truth, baseline, and our modified
architecture with IndexNet (NonLinear HIN).

Network IndexNet Mean IoU
SegNet – 31.50

SegNet + IP + IU Nonlinear HIN 32.70
SegNet + IP + IU O2O Linear DIN 32.47
SegNet + IP + IU M2O Nonlinear DIN 32.71

Table 3: Quantitative comparison on the SUN RGB-D dataset.
The best performance is boldfaced

4. Scene Understanding

Here we extend IndexNet to the task of scene under-
standing. We choose SegNet [2] as our baseline and eval-
uate three different IndexNet structures—Nonlinear HIN,
O2O Linear DIN, and M2O NonLinear DIN. All models are
trained from scratch with a batch size 16 for 100 epochs.
The learning rate is initially set to 0.01, and reduced by
×10 at the 70-th epoch and the 90-th epoch, respectively.
As shown in Table 3, all three types of IndexNet bring
3% ∼ 4% relative improvements. According to the qual-
itative results shown in Fig. 4, we observe that our modified
models significantly suppress some discrete predictions ap-
peared in the baseline. It is worth noting that, IndexNet also
speeds up the convergence of training process, which can
be observed from the learning curves presented in Fig. 5.

5. Visualization of Index Maps

Here we present further visualization results of index
maps learned by the IndexNet (M2O DIN with ‘Nonlin-
ear+Context’) in Fig. 6. Note that only index maps gen-
erated for the decoder are visualized here because the mag-
nitude of index maps for the encoder is suppressed due to
the use of softmax. It can be seen from the results that the
IndexNet automatically learns to capture contours and de-
tails.

6. Qualitative Results of Alpha Mattes

Here we show some further results on the testing set of
alphamatting.com online benchmark in Fig. 7 and results
on the Composition-1k testing set in Figures 8 and 9. These
results further present the efficacy of our method, such as
recovering textures and details, and extracting transparent
foreground objects.

7. Ablation Study on Index Normalization

Details about the design of IndexNet have been illus-
trated in main part of the paper. Here we supplement re-
sults on the effect of different normalization choices to the
index maps. Aside from sigmoid function for decoder and
sigmoid+softmax function for encoder, we compare other
three different combinations of normalization functions, as



Figure 4: Scene understanding results on the SUNRGB-D dataset. From left to right, the original image, ground-truth, SegNet, HIN with
‘Nonlinear+Context’, O2O DIN with ‘Linear+Context’, M2O DIN with ‘Nonlinear+Context’.

Figure 5: Learning curves of training loss and test mIoU on the SUN RGB-D dataset.

listed in Table 4. This experiment is conducted based on the
M2O DIN with “Nonlinear+Context”. We observe that, the
other three types of design all perform worse than the nor-
malization design we choose, which suggests it is important
to keep the magnitude consistency during indexed pooling.

8. Failure Cases

Here we show some failure cases of our method, which
are not included in the main text due to page limitation. As
shown in Fig. 10, our method may achieve unsatisfactory
results when the foreground and the background have sim-
ilar colors. Indeed, we consider such a case is hard even



Figure 6: Further visualization results of index maps for upsampling. From left to right, learned index maps from shallow to deep layers.

Figure 7: Further results on the alphamatting.com testing set. Here we focus on the matting of transparent objects. From left to right,
the original image, AlphaGAN matting [12], DCNN matting [5], Information-flow matting [1], Deep matting [16], Ours.

Encoder Decoder SAD MSE Grad Conn
sigmoid sigmoid 52.7 0.016 29.3 52.4
softmax softmax 51.6 0.015 29.2 51.6

softmax+sigmoid softmax 57.3 0.016 43.5 57.3
sigmoid+softmax sigmoid 45.8 0.013 25.9 43.7

Table 4: Ablation study of different normalization choices.

for manual matting. A potential solution may be to do local
contrast enhancement.
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