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1. Proof for Theorems
This section provides the proofs for the 4 theorems.
Theorem 1. Upper bounding: For any n, < k and s,
Ek(&y) > ’YEPrec@k(S;y) 7’7(]{" 7”-"—) (1)

Proof. We rewrite the loss function by adding the scores in
set K\N to both of the two terms.
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Note that X was defined as the top k ranked according to 3;.
We also define set K’ as the top k ranked according to s;,
ie. K' = {z € C:s; > sp}. So, the first term,

Z 8 > Z 8i = Ylprecar(s,y) + Z 5 3)
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We further consider the second term. In set P |J K\ there
are k images including n positive images. So

z€PUK\N z €PUK\N

By definition ) . ., s; is the maximum for the sum of s;
over k images and [P |J KC\N| = & so,
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Combining the three formulas above concludes this proof.
O

Theorem 2. Consistency: For any n, < k, when there
is a large margin ~ between positive images and negative
images that should be ranked out of IC (the k — ny + 1-th
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ranked negative image), i.e. Siny] " Stk—ny+1] >y, we have
le(3,Y) = lprecar(s,y) — (k —ny) = 0. Here sT € R+
and s— € R" ™™+ are two sub-vectors of s containing the

similarity scores of positive and negative images.

Proof. If K contains all n, positive images, P = N = 0,
obviously, ¢x(s,y) = 0.

We now assume K contains n/, < n4 positive images,
P =N # (). We have,
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|N| = ny —n/_ . Based on the definition of A" and the large
margin condition,
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The set P |JK\N contains k& — ny negative images. So
li(s,y) < 0. Since we already known ¢ (s,y) > 0 from
Theorem 1, we conclude (s, y) = 0. O

We now prove the two properties of Case 2 in the follow-
ing 2 Theorems. !

Theorem 3. Upper bounding: For any ny > k, and s,

gk(SQ’) Z 'YEPrec@k:(say) (9)

'A special case of was proven in [13]



Proof. The set P |JK\N contains only k positive images.

Y. k= ) s (10)
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which is different from Eq 4 in Theorem 1. Other steps of
this proof is straight forward, so we omit them for concise.
O

Theorem 4. Consistency: For ny > k, when there is a
large margin ~y between the top k positive and the top nega-
tive images, i.e. 5[4,;] — 5[71] > 7, we have Lppecar = £ = 0.

Proof. We also assumes n/, < n. So

bl(s,y) =D 8i— Y 8i=9N+ D si— Y s
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Given the large margin condition, Zz ep Si— Zzi N Si >
v|N], We have £ (s,y) < 0. Combining with the above
theorem ¢ (s,y) > 0, we have ((s,y) = 0.
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[PR@I P@3 P@5 P@I0 | R@3 R@5 R@I0 NMI mAP FI

CUB-200-2011
Uniform Triplet 44.53 40.64 38.83 3545 | 6484 73.80 83.12 5496 20.75 19.42
Hard Mining Triplet | 53.88 50.01 47.64 4392 | 72.64 79.74 8751 62.17 27.14 30.02
Semi Hard Tripltet 51.87 48.62 46.58 43.18 | 71.44 79.03 86.75 61.14 27.16 27.01
Distance Weighted | 50.49 46.70 44.18 40.64 | 70.44 7794 86.44 6041 2459 27.87
Contrastive Loss 39.69 36.19 34.01 31.01 | 59.06 68.11 80.17 53.09 18.33 20.48
Lifted Struct Loss 45.19 4137 39.10 3594 | 66.00 74.11 8359 58.07 21.86 23.58

N-Pair Loss 50.61 47775 4522 4156 | 69.68 76.86 85.62 59.56 25.79 25.97

Angular Loss 51.98 47.58 45.14 41.03 | 7142 7893 86.80 60.99 2432 27.83

Proxy NCA Loss 52.70 48.79 4634 4242 | 7148 78.54 86.14 61.64 26.13 28.52

Ours £}, 54.12 50.17 4790 44.43 | 72.69 80.30 87.98 63.53 27.79 31.70
Standford Cars

Uniform Triplet 52.97 4546 41.16 3461 | 70.51 77.17 85.02 44.73 1297 12.00

Hard Mining Triplet | 69.12 62.05 57.74 51.00 | 83.20 87.76 92.19 57.00 22.38 25.29
Semi Hard Triplet 62.35 56.00 52.19 4635 | 77.92 83.68 89.19 54.19 21.87 2232
Distance Weighted | 59.02 52775 48.80 4295 | 75.55 81.29 8752 5236 19.98 20.42
Contrastive Loss 38.00 30.71 27.19 2239 | 5432 62.61 7323 3493 749 7.00

Lifted Struct Loss 56.56 49.04 4471 3797 | 7331 7934 86.16 4627 14.47 13.25

N-Pair Loss 61.75 53.70 49.18 4227 | 77.01 82.60 88.53 4947 16.56 15.63
Angular Loss 71.44 64.73 60.70 53.57 | 84.28 88.65 92.81 57.40 2348 25.28
Proxy NCA Loss 72.39 66.14 62.05 5498 | 8546 89.71 93.40 59.00 24.18 27.21
Ours ¢, 73.34 67.37 63.34 56.17 | 86.29 90.38 94.12 59.64 24.79 27.73

Online Product

Uniform Triplet t 61.82 4597 3630 23.19 | 70.65 74.08 78.30 27.36 44.35 24.27
Hard Mining Triplet | 72.94 57.65 46.87 30.51 | 80.62 83.58 8697 3654 3745 33.79
Semi Hard Triplet 67.46 51.88 41.58 26.81 | 75.68 79.02 83.11 32.05 4952 27.85
Distance Weighted 67.21 51.69 41.55 26.88 | 7550 78.74 8256 27.65 49.55 25.50
Contrastive Loss 58.14 41.97 3256 2052 | 66.71 7033 74.83 2698 41.14 25.63
Lifted Struct Loss 64.45 48.60 38.63 2473 | 72.89 76.31 80.34 37.84 46.72 33.52

N-Pair Loss 65.51 49.76  39.70 2551 | 73.84 7729 8139 3586 47.74 31.09
Angular Loss 68.43 52.66 4233 2737 | 76.66 79.79 83.61 30.04 5043 27.77
Proxy NCA Loss 67.21 51.50 41.25 2626 | 7543 7873 82.61 3637 49.32 3190
Ours ¢ 74.95 59.90 48.89 31.89 | 82.40 8524 88.45 38.03 5234 3527

Table 1. Comparison with state-of-the-art sampling methods and loss functions on three benchmark datasets. The network backbone is
Inception with batch normalization layer. “P” is for precision and “R” is for Recall. Note that NMI and F1 in Online Product Dataset are
computed by 12 super categories for time efficiency.

Backbone Uniform Hard Semi-hard Distance Contrastive Lifted Npair Angular Proxy Ours

Inception 88.20 89.53 89.49 89.57 87.21 88.69 88.94 89.77 86.91 90.07

Dense201 87.89 90.95 90.98 90.23 87.19 88.76  89.48 91.03 89.54 91.94
Table 2. In our previous tables on Online Product, we reported the NMI and F1 on 12 super classes for time efficiency. For easy comparison
with that in literature, we also report the NMI for 11k fine-grained classes.
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Figure 1. Precision vs Recall curve, ROC curve on Cars and Online Product dataset (a,b,d,e, shared legend). The top-1 precision on test
data along the training process of Online Product dataset. (c, f, shared legend). Our algorithm outperforms all baselines.Other results in
our main file. The steps in performance gain in figure (c) is due to the decrease in learning rate.

Figure 2. Barnes-Hut t-SNE visualization of our embedding on the test split of Online Product dataset. The embedding generated by the

proposed algorithm put similar images in clusters. Best viewed on a monitor zoomed in.



