A Bayesian Optimization Framework for Neural Network Compression -
Supplementary Material

Xingchen Ma*?, Amal Rannen Triki * 12, Maxim Berman?, Christos Sagonas®, Jacques Cali ¢, and
Matthew B. Blaschko?®

*ESAT-PSI, KU Leuven, Belgium
®Onfido, London, UK
°Blue Prism, London, UK

In this supplementary material, we provide more anal-
ysis that support the method presented in the main paper.
Section A shows that controlling the Loy distance allows a
control over the risk of the compressed function as claimed
in Section 3.1. Section B justifies the number of samples
we used to estimate the function distance introduced in sec-
tion 3.1. Section C shows a visualization of the proposed
acquisition function and how to select the parameter .

A. Function distance and generalization

In this section, we show that compression with the Lo
knowledge distillation objective can lead to a generalization
bound on the performance of the compressed network as a
function of the performance of the uncompressed network.
To do so, we assume that the loss used in evaluating the risk
is Lipschitz-continuous.

Definition 1 (Lipschitz-continuity). A function f : X — Y
is K-Lipshitz continuous if:

Vi, mp € X, || f(21) — fla2)lly < Kz = 22flx, (D
where ||.|| x and ||.||y are norms on the spaces X and).

Definition 2 (Generalization error). Let f be a function
mapping an input space X to a target space Y, and S =
{(x1,91)s -+, (Tn,Yn)} an i.i.d. sample drawn from a dis-
tribution P over X x). We define:

o the risk as R(f) = Ey)~p [((f(2),)],

o the empirical risk as R, (f) = + S l(f (i), i),

n

* Authors with equal contribution

TThis author is currently affiliated with Deepmind.

Contribution to this research project was entirely made while this co-
author was at Onfido, UK.

e the generalization error as the gap between the empiri-
cal risk and the true risk:

Ea(f) = R(f) — Rulf))

Proposition 1. Let f* be the function encoded by a neural
network optimized to minimize the empirical risk, such that
[achieves a small generalization error, and fy the function
encoded by a compressed version of this network. Then, if
the loss function £ is K -Lipschitz continuous, controlling the
function distance:

L(fo. [*) = Eanr(lfo(2) — f*(@)I3) = 11" — f6||§,(1;)

allows a control over the true risk of fg.

Proof. For simplicity, we consider a target space included
in R? and we use the ¢, vector norm on this space. If £ is
K -Lipschitz continuous with respect to its first input, then
we can write:

Vo € X, [0(f*(x),y) — U(fo(2), y)| < K|S () —fe(w)(ﬂlz)

Therefore, using Jensen inequality, we have:

(R(f*) = R(f6))® < Ep[|t(f*(x),y) — £fo(x),)]

4)

< K’Ep(|lfo(z) = f*(@)3) (6

& [R(f*) = R(fo)l < KIIf* = follo.p (7
To sum up, we have:

R(fo) < R(f*) + K"~ follo.r (8)

< Ru(F) +Ealf*) + KIF* = folzp.)

Therefore, if f* is a minimizer of the empirical risk such
that the generalization error is small, then it is sufficient to
control the distance £(fg, f*) to achieve a control over the
risk of fo. O

B. Distribution of the function norm estimates

In order to use the function norm in Bayesian optimiza-
tion, we need to check that the sample mean used to estimate
L(fo, f *) follows a Gaussian distribution. Figure 1 and 2
show the Q-Q (quantile-quantile) and density plots for the
distribution of the estimated function norm under different
sampling size respectively. These experiments are realized
with a Resnet18 and the corresponding compressed model
obtained with random compression parameters. These fig-
ures are generated with 500 norms totally. Both Figure 1 and
Figure 2 show that a small sample size (less than 20) results
in a distribution skewed to the left. When the sampling size
is larger than 50, the observed empirical distribution is well
centered. In our experiments, we consistently use 50 as our
sampling size, as it balances the computation cost and the
requirements of a GP model.

#N =10 #N =20 #N =30

5000

4000

3000

.
2000+

#N =40 #N =50 #N =100

Function norm quantiles

o
=}
S
S

4000 /
3000

2000

-2 0 2 -2 0 2 -2 0 2
Theoretical normal quantiles

Figure 1. Q-Q plot for the norm under different sampling size

To complete Section 4.1 of the paper, Figure 3 shows the
relationship between the estimated function norm and the
topl error rate for different layers in Resnet101.

C. Visualization of our acquisition function

Figure 4 shows a visualization of our acquisition function
to the sinone function. The objective function is shown in the
top row, and the acquisition function is shown in the lower
row. The blue vertical line shows the current best point and
the red vertical line shows the next exploring point. In this
optimization, we add Gaussian noise (sigma equals to 0.03)
to sinone function. !

! Animation compatible with Adobe Reader.

#N =10 #N =20 #N =30
0.0020
0.0015
0.0010
0.0005 A
0.0000
#N =40 #N =50 #N =100
0.0020
0.0015
0.0010
0.0005
0.0000

3000 4000 5000 3000 4000 5000

Function norm

3000 4000 5000

Figure 2. Density plot of the estimated norm with different sam-
pling sizes

layer: pool5 layer: fc6
1.0 P] gl b
8 084
°
s
£ 061 !
W
-
[=8
2 041
021 f
T T T T T T T T
0 2000 4000 0 5000 10000 15000 20000

function norm function norm

Figure 3. Estimated norm vs Top-1 error rate in Resnet101

0.5

next probe
0.0 F 30 —— current best
—054 T / —\ N / - |
-1.01 0.35
-15
0
-2
—44
-6
-8
-101
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Visualization of our acquisition function for sinone func-
tion.

C.1. Selection of ~

To select v in our VGG experiments, we optimized accu-
racy given a fixed compression ratio budget. We may write

this as a constrained optimization problem:
argmeinﬁ(fg,f*), s.t. R(fg,f*) <B. (10)

Taking the Lagrangian of this constrained optimization prob-
lem, we can perform a minimax procedure using Bayesian
optimization to solve a minimization procedure over ¢, and
then alternating with a maximization over the Lagrange
multiplier from the constraint. As multiple Bayesian op-
timization iterations are used, we implemented a caching
mechanism that simply reweights the linear combination of
L(fo, f *) and R(fo, f *) computed in previous iterations by
the current value of the Lagrange multiplier.

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	anm0:

