
Supplementay Material: Deep Tensor ADMM-Net for Snapshot Compressive
Imaging

Jiawei Ma† Xiao-Yang Liu† Zheng Shou Xin Yuan
Columbia University Columbia University Columbia University Nokia Bell Labs

{jm4743, xl2427, zs2262}@columbia.edu xyuan@bell-labs.com

Contents

A. Sensing matrix Video SCI System 1

B. Tensor Operations 2

C. Demonstration in Network Implementation 3

D. Model Building 4

E. Real-life Experiment Description 5

References 5

A. Sensing matrix Video SCI System
As described in the Fig. 1 of the paper, the training video

X is modulated by the sensing matrix C. The value of each
unit in the sensing matrix is modeled according to hardware
design in the system or preset by the simulation data mask.

For our simulation task, the sensing matrix is preset with
each unit being binary, i.e., either 0 or 1 [4], which were
used across all simulation data sets for different algorithms.
Due to hardware calibration, the sensing matrix of real-world
images are modeled by continuous values between 0 and 1.



B. Tensor Operations
Our decoder aims at reconstructing a 3D tensor X ∈

Rn1×n2×B and rests on the definition of Tensor Nuclear-
Norm in Def. 1 in the paper. A 3D tensor X can be viewed
as an n1 × n2 matrix of tubes lying in the third-dimension.
For two tubes (vectors) of the same size a, b ∈ R1×1×B ,
we denote c = a • b as the circular convolution between
these two tubes. Accordingly, we introduce the following
operators [2, 3, 7].

Definition B.1. Tensor Product (t-product) [2, 3, 7]. The
t-product C = A∗B ofA ∈ Rn1×n2×B and B ∈ Rn2×n3×B

is a tensor of size n1×n3×B, where C(i, j, :) =
n2∑
s=1
A(i, s, :

) • B(s, j, :), ∀(i, j) ∈ {1, . . . , n1} × {1, . . . , n3}.

The t-product of two tensors is analogous to a matrix-
matrix multiplication, except that the scalar multiplication is
replaced by the circular convolution operation.

The identity tensor I ∈ Rn1×n1×B is a tensor whose
first frontal slice I(1) is the n1 × n1 identity matrix and all
other frontal slices, I(b) for b ∈ {2, ..., B}, are zero matrices.
The tensor transpose of a 3-D tensor T ∈ Rn1×n2×B is de-
fined as T † ∈ Rn2×n1×B and obtained by transposing each
frontal slice T (b) and then reversing the order of transposed
slices from 2 through B, i.e., (T †)(b) = (T (B−b+2))H for
b ∈ {1, ..., B} . Accordingly, T ∈ Rn1×n1×B is orthog-
onal tensor when T † ∗ T = T ∗ T † = I. With those
notations, we give the definition of t-SVD.

Definition B.2. Tensor Singular Value Decomposition (t-
SVD in Fig. 1) [3, 7, 2]. The t-SVD ofM ∈ Rn1×n2×B is
given byM = U ∗Θ ∗ V†, where U and V are orthogonal
tensors of sizes n1 × n1 ×B and n2 × n2 ×B, respectively.
Θ ∈ Rn1×n2×B is a rectangular (n1 = n2 in our experi-
ment) tensor, whose frontal slices Θ(b) for b ∈ {1, ..., B} are
all diagonal matrices. Similar to the matrix SVD, the number
of non-zero tubes of Θ are called tubal rank, denoted as r.

Figure 1. Illustration of tensor-SVD.

We denote tensor T̃ as the frequency domain representation
of T , obtained by taking the Fourier transform along the
third dimension, i.e., T̃ (i, j, :) = fft(T (i, j, :)). Since the
Fourier transform is essentially a linear transform, we can
further derive the Fourier transformation in matrix form
Π ∈ Cn1n2B×n1n2B for Vec(X̃ ) = ΠVec(X ) and

Π = Λ⊗ In1n2
, (1)

where each unit in Λ ∈ CB×B is the coefficient of Fourier
transformation, In1n2 is an n1n2×n1n2 identity matrix and
⊗ denotes Kronecker (tensor) product. Following this, Π can
be viewed as a B ×B matrix of weighted identity matrices
lie in the plane and we name this special structure as Rectan-
gular Diagonal Blocks (RDB) where each block Π{b1,b2} =
Λ(b1, b2)In1n2 for (b1, b2) ∈ {1, ..., B} × {1, ..., B} and
the inverse matrix Π−1 = Λ−1 ⊗ In1n2 (demonstration is
provided in SM) can be efficiently computed.

As shown in Fig. 3 in the paper, Πdiag(n) ∈ RB×B is
further defined as the matrix composed of the nth diagonal
element of all the blocks. Similarly, we can generalize Π to
any transformations, e.g., DCT, FFT by replacing Λ and use
subscript f labels the transformation type.



C. Demonstration in Network Implementation

For tensor X ∈ Rn1×n2×B , we denote tensor X̃ as the
frequency domain representation of X , obtained by taking
the Fourier transform along the third dimension, i.e., X̃ (i, j, :
) = fft(X (i, j, :)). Since the Fourier transform is essentially
a linear transform, we have

X̃ (i, j, :) = ΛX (i, j, :). (2)

where (i, j) ∈ {1, ..., n1} × {1, ..., n2} and Λ ∈ CB×B de-
notes the transformation matrix corresponding to the Fourier
transform. Due to the invertibility of Fourier transform, it is
intuitive to derive the following Conclusion 1 so that Λ−1,
the transformation matrix of inverse Fourier transformation,
exists. For simplicity, we use X̃ = ΛX to denote the pro-
cess in (2) and denote Λ as unitary transformation matrix of
Fourier Transformation so that ΛΛ−1 = Λ−1Λ = IB .
Conclusion 1: Fourier transform Λ is a rectangular matrix
of full rank, i.e., an invertible matrix.

According to (2), we can obtain X̃ by applying transfor-
mation matrix on each tube

Vec(X̃ ) = ΠVec(X ), (3)

where Π can be viewed as a B × B matrix of weighted
identity matrices lie in the plane, a special structure termed
as Rectangular Diagonal Blocks (RDB). This structure can
be obtained by

Π = Λ⊗ In1n2
, (4)

where In1n2
is an identity matrix of size Rn1n2×n1n2 . Fur-

thermore, it is easy to find

Im ⊗ In = Imn. (5)

In the RDB structure, we denote Π{b1,b2} = Λ(b1, b2) · I
as the (b1, b2)-th block of Π where (b1, b2) ∈ {1, ..., B} ×
{1, ..., B}, i.e., each block Π{b1,b2} is an weighted identity
matrix and the value of each unit in the diagonal is Λ(b1, b2).
We use Πdiag(n) ∈ CB×B to denote the set of the n-th diago-
nal unit of all the block, i.e.,

Πdiag(n) =
Π{1,1}(n, n) Π{1,2}(n, n) . . . Π{1,B}(n, n)
Π{2,1}(n, n) Π{1,2}(n, n) . . . Π{1,B}(n, n)

...
...

. . .
...

Π{B,1}(n, n) Π{B,2}(n, n) . . . Π{B,B}(n, n)

 .
(6)

Subsequently, we can conclude

Πdiag(n) = Λ, n ∈ {1, ..., n1n2}. (7)

Combining (5), we have

Π−1
(
Πdiag(n) ⊗ In1n2

)
= (Λ−1Λ)⊗ In1n2

= ΛΛ−1 ⊗ In1n2 = IB ⊗ In1n2 = In1n2B

(8)

Considering the RDB structure of Π, we can have

(Λ⊗ In1n2
)(Λ−1 ⊗ In1n2

) = In1n2B (9)

According to (9), we can make use of the RDB structure
of Π and transfer the inverse matrix calculation of a n1n2B×
n1n2B matrix to the inverse matrix calculation of a B ×B
matrix and the transform type can be generalized to any
orthogonal transformation matrix, e.g., DCT. Π is a special
case for RDB structure since each block is an identity matrix.
We now generalize this form to S where the value of each
block’s diagonal is not equal with each other. Still, making
use of the RDB structure, we have the efficient computation
method in the paper and a further conclusion.
Method: The calculation of S−1 ∈ Cn1n2B×n1n2B can
be converted to the calculation of (Sdiag(n))

−1 ∈ RB×B ,
i.e., (S−1)diag(n) = (Sdiag(n))

−1, for n ∈ {1, ..., n1n2}. In
this way, the computation complexity can be reduced from
O(n31n

3
2B

3) to n1n2O(B3).
Conclusion 2: The RDB matrix S is invertible if and only
if Sdiag(n) is invertible for n ∈ {1, ..., n1n2}.

In our implementation, we add 10−6IB for each Sdiag(n)
to avoid the situation where Conclusion 2 is not satisfied.



D. Model Building
Deep Tensor ADMM-Net is built on the TNN-ADMM

algorithm. The algorithm is designed in tensor domain and
some special operation, described in Section B, is introduced.
As shown in Fig. 2 in the paper, there are multiple patterns
connected within one stage and each pattern is developed
from our TNN-ADMM algorithm. In this section, we will
give the derivation of traditional TNN-ADMM algorithm so
that a clear algorithm-model mapping is provided.

In traditional TNN-ADMM algorithm, the tensor nuclear
norm is defined based on the representation domain trans-
formed by Fourier Transform. In other words, there is only
one fixed transformation and the problem minimization is
formulated as

argmin
X , Z̃

1

2
‖y − Φx‖22 + ‖Z‖∗

s.t. X̃ = Z̃, (10)

where Z̃ is the auxiliary variable in ADMM framework.
Similarly, Z̃ denotes the signal on the frequency domain and
Z is not applicable. According to (10), the problem can be
solved by the following recursions.

X k = argmin
X{〈

Ũ t, X̃ − Z̃t
〉

+
ρ

2
‖X̃ − Z̃k−1‖2F +

1

2
‖y − Φx‖2F

}
,

(11)

Z̃k = argmin
Z̃{

ρ

2
‖X̃ k − Z̃‖2F +

〈
Ũk−1, X̃ k − Z̃

〉
+ ‖Z‖∗

}
,

(12)

Ũk = Ũk−1 + (X̃ k − Z̃k), (13)

where ρ is the coefficient of Lagrange multiplier in ADMM
framework. To solve the minimization task in (11) - (13),
we have the following steps.
Step 1. The X -minimization in (11) is a least-square projec-
tion and the closed-form solution is:

X k = Sk(Φ>y + ρkΛk(Z̃k−1 − Ũk−1)), (14)

Sk = (Φ>Φ + ρkΛkΛk>)−1, (15)

where Π denotes the TransMat of Fourier Transformation.
The subscript is eliminated to emphasis this TransMat is a
fixed matrix.
Step 2. With reference to Definition 4 and Theorem 1 in
the paper, the solution of (12), it can be described as

Z̃k = D 1
ρ
(Ũk−1 + X̃ k). (16)

Since the TNN is essentially the sum of singular values of
all the frontal slices of X , the shrinkage operator can be
applied to each frontal slice of (Ũk−1 + X̃ k) in parallel and
independently.

Here, we apply FISTA algorithm in [1] to improve the
converge speed by the following recursions:

Z(b),t = Dτ (M̃(t)),

Z̃(b),t+1 = Z(b),t +
α(t−1) − 1

α(t)
(Z(b),t −Z(b),t−1).

(17)

where α(t) is updated by

α(t) =
1

2

(
1 +

√
1 + (2α(t−1))2

)
, (18)

Step 3. The solution of dual variable update is intuitive ac-
cording to (13). Since the Fourier transform of Z is required
in Step 2, we also apply FISTA [1] algorithm to accelerate
the convergence speed of U in its update

U (b),t+1 = Ũ (b),t + ρ(X (b),t+1 −Z(b),t+1),

Ũ (b),t+1 = U (b),t +
α(t−1) − 1

α(t)
(U (b),t − U (b),t−1).

(19)

Algorithm 1 ADMM algorithm for TNN minimization
: TNN-ADMM (y,Φ,T )

Input: Measurements y ∈ Rn1n2 , sensing matrix Φ ∈
Rn1n2×n1n2B , maximum number of iterations T .
1: Initialization:

α(0) = 1,
X (0), Z̃(0),Z(0), Ũ (0),U (0) ← 0,

2: for t = 1 to T
Update X (t+1) via (14),
Update M̃(t)

b = (X̃ (t)
b + Ũ (t−1)

b ), b ∈ {1, ..., B},
Update α(t+1) via (18)
Update Z̃(t+1) via (17),
Update Ũ (t+1) via (19),

end for
Output: X (T+1)

Taking the advantage of learning ability of neural network,
we train the model on multiple transformed domains and the
relationship between them, instead of just presetting the
Fourier domain as our frequency representation domain. By
adopting the multiply domains in the Deep Tensor ADMM-
Net, we correspondingly modify the minimization task and
the subsequently the solution details. Besides, the FISTA
algorithm in (18) is replaced by a trainable variable η in our
network.



E. Real-life Experiment Description
Our proposed neural network is applied to real-world

data captured by the camera [5, 6]. The measurement of
three high-speed scenes are shown in the Fig. 7. The expo-
sure time of the camera is 33ms and the imaging systems
capture a single compressed frame per 33ms. With this
coded/compressed measurement, we can recover 14 or 22
frames high-speed videos. These videos of real-life scenes
happen within 33ms and it is impossible for a conventional
camera to capture them. In this section, we provide details
of each scene, as shown in Fig. 8 - 10 in the main paper.
Wheel: Different characters are attached on a fan while the
fan is doing high-speed rotation. The one-frame measure-
ment is used to recover 14 frames.
Ball: Two plastic balls drop freely and hit the ground. Then,
the rotation and rebounding happen on the two objects re-
spectively. We recover this process in 22 frames and the
result shown in Fig. 9 is selected every other frame.
Hammer: A hammer, swinging like pendulum, is used to
knock down a tank and the tank falls down. The compression
ratio is 22:1 and the reconstruction result shown in Fig.10 is
selected every other frame.

For gray scale image in Wheel, tensor ADMM-Net gener-
ates clear image reconstruction with high efficiency while the
degree of ghosting is reduced. For color image reconstruc-
tion, i.e., Ball and Hammer, tensor ADMM-Net provides
a more clear and smooth reconstruction result while much
noise exists in the reconstruction of GAP-TV.

References
[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences, 2(1):183–202, 2009.

[2] Fei Jiang, Xiao-Yang Liu, Hongtao Lu, and Ruimin Shen.
Efficient multi-dimensional tensor sparse coding using t-linear
combination. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[3] Misha E Kilmer, Karen Braman, Ning Hao, and Randy C
Hoover. Third-order tensors as operators on matrices: A the-
oretical and computational framework with applications in
imaging. SIAM Journal on Matrix Analysis and Applications,
34(1):148–172, 2013.

[4] Yang Liu, Xin Yuan, Jinli Suo, David Brady, and Qionghai Dai.
Rank minimization for snapshot compressive imaging. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2018.

[5] Patrick Llull, Xuejun Liao, Xin Yuan, Jianbo Yang, David
Kittle, Lawrence Carin, Guillermo Sapiro, and David J Brady.
Coded aperture compressive temporal imaging. Optics Express,
21(9):10526–10545, 2013.

[6] Xin Yuan, Patrick Llull, Xuejun Liao, Jianbo Yang, David J
Brady, Guillermo Sapiro, and Lawrence Carin. Low-cost com-
pressive sensing for color video and depth. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3318–3325, 2014.

[7] Zemin Zhang, Gregory Ely, Shuchin Aeron, Ning Hao, and
Misha Kilmer. Novel methods for multilinear data completion
and de-noising based on tensor-svd. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3842–
3849, 2014.


