
A Tour of Convolutional Networks Guided by Linear Interpreters
– Appendix –

Pablo Navarrete Michelini, Hanwen Liu, Yunhua Lu, Xingqun Jiang
BOE Technology Co., Ltd.

{pnavarre, liuhanwen, luyunhua, jiangxingqun}@boe.com.cn

Abstract

We provide the following additional information:

• Classification:

– Explanation of Forward/Back–Projections;
– Residual contributions for more architectures;
– Contribution histograms for more networks;
– Pixel votes for more images;
– What happens after an adversarial attack?

• Super–Resolution (SR):

– Projective/receptive filters;
– More eigen–inputs/outputs.

• Image–to–Image Translation (I2I):

– Projective/receptive filters;
– Eigen–inputs/outputs.

• Demonstrations:

– Video material;
– Interactive material.

A. Classification
Explanation of Forward/Back–Projections:
In our analysis of linear interpreters for classifiers we use

a theorem that is essential to understand how do we decom-
pose the contributions of the network to the output scores.
Roughly speaking, the theorem says that:

In a sequential network there are explicit ex-
pressions for F and r in the linear interpreter
y = Fx + r. The filter matrix F is given by
the forward–projection of the input to the output
score. And r is given by the sum of all forward–
projected masked–biases from each layer to the
output score.

By projection we mean the progressive application of the
linear transformation for each layer. Forward projection
means that we apply the linear transformations of a given
layer, and then the transformation of the next layer, and so
forth. Backward projection means that we apply the trans-
posed linear transformation of a given layer, and then the
same in the previous layer, and so forth. Finally, masked–
biases are the bias parameters of the network (scalars) mul-
tiplied by activation masks (images of ones and zeros for
ReLU). Then, the masked–biases, denoted by b̂, are images
in the network’s feature domain at the layer, that can be for-
ward or back projected through the network.

The proof of the theorem is straightforward using induc-
tive arguments. So here we prefer to follow a more didactic
approach. Namely, we will unfold the formula for the linear
interpreter and see how the expressions for filter matrix and
residual decomposition appear.

We start with a sequential convolutional network model:

yn = Wnxn−1 + bn and xn = h (yn) , (1)

with parameters bn (biases) and sparse matrices Wn (con-
volutions, including strided and transposed).

Let Ŵn = AnWn and b̂n = Anbn + cn. Where An, cn
are the parameters of the linear interpreter for h(yn). Then
we have:

xn = h (Wnh (Wn−1xn−2 + bn−1) + bn) (2)

= Ŵn

Ŵn−1xn−2 +An−1bn−1 + cn−1︸ ︷︷ ︸
b̂n−1

+Anbn + cn︸ ︷︷ ︸
b̂n

(3)

= ŴnŴn−1 xn−2︸ ︷︷ ︸
Ŵn−2xn−3+b̂n−2

+Ŵnb̂n−1 + b̂n (4)

=

n∏
k=1

Ŵkx0 +

n∏
k=2

Ŵk b̂1 +

n∏
k=3

Ŵk b̂2 + · · ·+ b̂n .

(5)

1



Now we can define:

Qn = I , Qi =

n∏
k=i+1

Ŵk, for i = 1, . . . , n . (6)

and we get:

xn = Q0︸︷︷︸
F

x0 +Q1b̂1 +Q2b̂2 + · · ·+ b̂n︸ ︷︷ ︸
r

. (7)

The filter matrix and residual at layer n are then given by:

F =

n∏
k=1

Ŵk , and r =

n∑
i=1

Qib̂i . (8)

This expression follows the so–called conservation prop-
erty of LRP[1] because the final score (the output of the net-
work) is written as a sum of layer–wise contributions. Nev-
ertheless, the nature of these contributions here has a dif-
ferent meaning, not as relevances but as forward–projected
masked–biases.

Matrices Q represent forward–projections, since they
progressively apply linear transformations towards the out-
put. Similarly, we can define:

P0 = I , Pi =

i∏
k=1

ŴT
k , for i = 1, . . . , n . (9)

Here, matrices P represent back–projections, since they
progressively apply transposed linear transformations to-
wards the input.

We can use this definition to give an explicit expression
for the Pixel Discussion (PD) images displayed in the main
text. This is

PD ∝ P0F
T (x0) + P1b̂1 + P2b̂2 + · · ·+ Pnb̂n , (10)

and PD is normalized so that the sum of all of its pixels
gives us the output score. Then, each pixel value in PD
gives a pixel–wise contribution to the final score.

Residual contributions for more architectures:
In Table 1 we show the average contribution of resid-

ual to classification scores for a more complete list of ar-
chitectures, including standard deviation values. In VGG
and SqueezeNet we observe that the residual contribution
increases for larger networks (with better benchmarks) but
this pattern does not repeat for other architectures. Standard
deviations are smaller for larger contributions of the resid-
ual, indicating that these architectures are consistently using
the residual to improve their classification scores.

Contribution histograms for more networks:

AlexNet SqueezeNet 1.0 VGG–11
78.5%
±15.8

80.7%
±11.5

82.2%
±14.1

ResNet–18 SqueezeNet 1.1 VGG–13
80.5%
±13.9

84.3%
±11.0

82.11%
±13.3

ResNet–34 DenseNet–121 VGG–16
83.7%
±12.9

94.6%
±4.5

84.2%
±12.0

ResNet–50 DenseNet–161 VGG–19
82.0%
±16.4

95.0%
±4.0

85.5%
±10.9

ResNet–101 DenseNet–169 VGG–11–BN
80.2%
±13.6

94.4%
±4.4

84.5%
±12.6

ResNet–152 DenseNet–201 VGG–13–BN
81.1%
±16.9

94.0%
±4.8

85.1%
±12.5

Inception v3 VGG–16–BN
91.6%

±8.0
86.2%
±12.9

VGG–19–BN
85.8%
±13.6

Table 1: Average contributions of residuals to classification
scores for 100 validation images from ImageNet–1k[6].
Numbers below percentage represent standard deviation.
DenseNet and Inception architectures show highest contri-
butions of the residual, with smaller standard deviation.

In Figure 1 we show histograms of the layer–wise contri-
butions to top–1 scores for a series of VGG network archi-
tectures. We use pre–trained models trained with and with-
out batch–normalization1. We observe in most cases that
the contribution of the input, F (x0)x0, does not account for
the largest part of the final score. So it is necessary to use
the layer–wise decomposition of the residual to really see
where do the contributions come from.

When trained without batch–normalization, we consis-
tently see two major contributions. One in early layers of
the network (before the first pooling layer). And the second
major contribution comes from much deeper in the network,
just before the fully connected layers. This pattern clearly
changes in networks trained with batch–normalization. In
this case the contributions move inside the network, with
major contributions just before fully connected layers.

Pixel votes for more images:
In Figure 2 we show more examples of pixel discussions

and pixel votes. Here, we observe more evidence that pixel
dicussions (PDs) are not conclusive about the network’s de-
cision. Sometimes, pixels seem to discuss strongly on an
object (e.g. wolf, pickup car, taxi, etc.) but in other cases

1Classifier models downloaded from https://pytorch.org/
docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html


200%

-150%

-100%

-50%

0%

50%

100%

150%

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

+ + + + + + ++ + + +-200%

125%

-50%

-25%

0%

25%

50%

75%

100%

-75% + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

80%

-60%

-40%

-20%

0%

20%

40%

60%

+ + + + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

-80%

-30% + + + + + + + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

50%

-20%

-10%

0%

10%

20%

30%

40%

200%

-150%

-100%

-50%

0%

50%

100%

150%

-200%

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

+ + + + + + ++ + + +

250%

-100%

-50%

0%

50%

100%

150%

200%

-150% + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

200%

-150%

-100%

-50%

0%

50%

100%

150%

+ + + + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

-200%

+ + + + + + + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

250%

-100%

-50%

0%

50%

100%

150%

200%

-150%

VGG-11

VGG-13

VGG-16

VGG-19

VGG-11 + BN

VGG-13 + BN

VGG-16 + BN

VGG-19 + BN

VGG-11 + ATTACK

VGG-13 + ATTACK

800%

-600%

-400%

-200%

0%

200%

400%

600%

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

+ + + + + + ++ + + +-800%

400%

300%

200%

100%

0%

100%

200%

300%

400% + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

800%

-600%

-400%

-200%

0%

200%

400%

600%

+ + + + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

-800%

+ + + + + + + + + + + + + + + + + + +

Convolu�onal Layer ReLU Max Pooling Fully Connected Layer

1000%

-400%

-200%

0%

200%

400%

600%

800%

-600%

VGG-16 + ATTACK

VGG-19 + ATTACK

BATCH-NORMALIZATION

ADVERSARIAL ATTACK

BATCH-NORMALIZATION

ADVERSARIAL ATTACK

BATCH-NORMALIZATION

ADVERSARIAL ATTACK

There are 2 main contributions. One 
peak is in early layers. A second peak is 
right before fully connected layers.

Overview:
When trained with BN, 
contributions move deeper in 
the network.

Overview:
An adversarial a�ack has an 
exploding variance effect in 
all contribu�ons.

Overview:

Figure 1: Layer–wise contributions to Top–1 scores for pre–trained VGG classifiers, averaged over 100 images from
ImageNet–1k. Standard deviation shown as shaded area. The first column shows models trained with original images
and without batch–normalization. The second column uses original images and models with batch–normalization. The third
column considers the same group of 100 images with adversarial attack added by using FGSM[2].



Who votes for... Who votes for...

wood rabbit? (top 1) fox squirrel? (top 3)white wolf? (top 1) Arc�c fox? (top5)

INPUT IMAGE

ILSVRC2012_val_00000027

INPUT IMAGE

ILSVRC2012_val_00000097

Top-1 (white wolf)
Pixel Discussion

Top-1 (wood rabbit)
Pixel Discussion

Who votes for... Who votes for...

soup bowl? (top 1) espresso? (top 2)harvester? (top 1) hay? (top 5)

INPUT IMAGE

ILSVRC2012_val_00000015

INPUT IMAGE

ILSVRC2012_val_00000004

Top 1 (harvester)
Pixel Discussion

Top 1 (soup bowl)
Pixel Discussion

Who votes for... Who votes for...

common newt? (top 1) e�? (top 3)half track? (top 1) tank? (top 2)

INPUT IMAGE

ILSVRC2012_val_00000035

INPUT IMAGE

ILSVRC2012_val_00000037

Top 1 (half track)
Pixel Discussion

Top 1 (common newt)
Pixel Discussion

Who votes for... Who votes for...

pickup? (top 1) grille? (top 2)apple? (top 1) lemon? (top2)

INPUT IMAGE

ILSVRC2012_val_00000023

INPUT IMAGE

ILSVRC2012_val_00000049

Top-1 (apple)
Pixel Discussion

Top-1 (pickup)
Pixel Discussion

Who votes for... Who votes for...

tricyle? (top 1) bucket? (top 2)switch? (top 1) digital clock? (top 2)

INPUT IMAGE

ILSVRC2012_val_00000053

INPUT IMAGE

ILSVRC2012_val_00000069

Top 1 (switch)
Pixel Discussion

Top 1 (tricyle)
Pixel Discussion

Who votes for... Who votes for...

taxi? (top 1) beach wagon? (top 2)handkerchief? (top 1) pillow? (top2)

INPUT IMAGE

ILSVRC2012_val_00000054

INPUT IMAGE

ILSVRC2012_val_00000056

Top-1 (handkerchief)
Pixel Discussion

Top-1 (taxi)
Pixel Discussion

Who votes for... Who votes for...

carton? (top 1) envelope? (top 2)mousetrap? (top 1) fox squirrel? (top2)

INPUT IMAGE

ILSVRC2012_val_00000009

INPUT IMAGE

ILSVRC2012_val_00000019

Top-1 (mousetrap)
Pixel Discussion

Top-1 (carton)
Pixel Discussion

wolf? (top 1) dog? (top 2)cellphone? (top 1) radio? (top 2)

Who votes for... Who votes for...INPUT IMAGE

ILSVRC2012_val_00000089

INPUT IMAGE

ILSVRC2012_val_00000091

Top 1 (cellphone)
Pixel Discussion

Top 1 (wolf)
Pixel Discussion

Figure 2: Pixel–discussions are back–projections of output scores to input domain that show pixel–wise contributions to the
scores. By comparing contributions among all scores, we make pixels vote independently and find that they focus on objects.



toucan?Strawberry?birdhouse?recrea�onal vehicle ?

CORRUPTED IMAGE

king crab? cairn?Abacus?cougar?

BEFORE ATTACK TOP 1 AFTER ATTACK TOP 170

Who votes for...

AFTER ATTACK TOP 1 CORRUPTED IMAGE BEFORE ATTACK TOP 1 AFTER ATTACK TOP 33 AFTER ATTACK TOP 1

Who votes for...

CORRUPTED IMAGE BEFORE ATTACK TOP 1 AFTER ATTACK TOP 57 AFTER ATTACK TOP 1 CORRUPTED IMAGE BEFORE ATTACK TOP 1 AFTER ATTACK TOP 1 AFTER ATTACK TOP 2

Who votes for... Who votes for...

ATTACK FAILURE

Figure 3: Effect of an adversarial attack using FGSM[2] on the votes of pixels. When an attack succeeds the pixels clearly
stop to vote for the right label. In most cases the pixels do not seem to vote much for the new top–1 label, suggesting that the
attack is spreading the opinion of pixels throughout all the 1, 000 classes.

the discussion takes place outside the main object (e.g. har-
vester, soup bowl). After we compare the discussions over
all labels we can see what is the overall pixel–wise outcome
of the discussion. These so–called pixel votes focus on the
main objects and show clear preferences for the top score
in the output of the network. We observe how “harvest”
and “hay” labels have pixels focused on areas with hay; an
“espresso” label have pixels looking at the liquid in a bowl;
a “digital clock” label have pixels on a square–shape plug
that looks like a digital clock; etc.

What happens after an adversarial attack?
We have observed clear patterns in the contribution his-

tograms and pixel votes that show the layers where net-
works make decisions and the pixel–wise preferences for
each label. To explore these patterns further, now we
consider the effect of an adversarial attack on the net-
work. Namely, we consider a Fast Gradient Sign Method[2]
(FGSM)2 that introduces noise in input images, making
them look brighter but keeping the content visible to hu-
man eyes. In Figure 3 we observe how the attack changes
the decision of the network without displaying visible con-
tent of the new top labels in the corrupted images. Here, we
observe a strong change in the pattern of pixel votes. In one
case (strawberry) where the attack fails, we still see the pix-
els voting more for top–1 label. When the attack succeeds,
pixels stop to vote for the right label but they also do not
vote much for the new top labels. It seems then that the ef-
fect of the attack is to spread the votes of pixels throughout
all 1, 000 classes. This hypothesis is consistent with the ef-
fect on the contribution histograms. In Figure 1 we observe
that the attack has a strong effect on the variance of the con-
tributions per layer. So for each image we get a different

2Attack implemented by using code from https://github.com/
baidu/AdvBox.

histogram, with strong positive and negative contributions.
The network does not behave normal with images cor-
rupted with adversarial attacks. The layers do not con-
tribute in the same way and pixel votes do not show strong
agreements.

B. Super–Resolution (SR)
Projective/receptive filters:
Supplementary material in section D includes a live

demonstration, showing rows and columns of the linear in-
terpreter for the upscaling methods: Bicubic, 4–layers Pix-
elShuffle3, and EDSR[3]. In Figure 4 we show snapshots of
the demonstration. The filter matrix F (x0) for SR methods
is not square and has a vertical shape. For every pixel in
the input domain (small resolution) there is a column, rep-
resenting the projective filter. We implement and analyze
a Bicubic upscaler for two reasons: first, it helps to ver-
ify the implementation of our analysis; and second, to take
it as a reference for interpretation. The demonstration let
users move around an image and inspect all the filter ma-
trix’s rows and columns. It is the equivalent to materialize
the matrix F (x0), except that we do not keep the matrix in
memory. For these examples we precomputed all rows and
columns and save them as image files. For the largest and
slowest model, EDSR, we can compute more than 2 rows
and column images per second on a Titan X GPU (12GB).
Then, we use a modern browser that displays the diagram
and loads the row/column images corresponding to the lo-
cation in the image.

For SR methods we observe that filter coefficients are
sparse since the image outside the zooming window is

3Model obtained by running a PyTorch tutorial from https:
//github.com/pytorch/examples/tree/master/super_
resolution

https://github.com/baidu/AdvBox
https://github.com/baidu/AdvBox
https://github.com/pytorch/examples/tree/master/super_resolution
https://github.com/pytorch/examples/tree/master/super_resolution
https://github.com/pytorch/examples/tree/master/super_resolution


COLUMN

ROW

Bicubic 4×

file:///home/pablo/Develop/LinearScope/template...

1 of 1 3/29/19, 5:25 PM

COLUMN

ROW

4L-PixelShuffle 4×

file:///home/pablo/Develop/LinearScope/template...

1 of 1 3/29/19, 5:24 PM

COLUMN

ROW

EDSR 4×

file:///home/pablo/Develop/LinearScope/template...

1 of 1 3/29/19, 5:22 PM

Figure 4: Screenshots of live demonstration showing the projective and receptive filters (columns and rows) for the linear
interpreter of upscaler systems. A bicubic upscaler does not adapt to the image and keeps the filter coefficients unchanged.
The 4–layer PixelShuffle model adapts to the image, changing on edges and textures, but does not clearly follow the geometry.
The EDSR[3] model adapts to the image and reveals the geometry of high–level features (e.g. eyes, textures, nose).

Figure 5: Results of the Singular Value decomposition of a linear interpreter applied on EDSR[3] 4× super–resolution
method. The basis used by EDSR is spatially localized, oriented and bandpass, comparable to wavelet basis[5], and similar
to the receptive fields of simple cells in mammalian primary visual cortex. The Eigen–inputs/outputs for largest singular
values capture the objects with largest receptive fields, indicating strong knowledge of the geometry of the image.



mostly full of zeros. The coefficients are concentrated
around the pixel location, as expected, since interpolation
must give preference to the current pixel location and use
its neighbors to improve it.

The demonstration shows that for good models, like
EDSR, a user can guess the location in the image just by
looking at the projective filters (columns). In layman’s
terms:

Inspecting SR projective filter coefficients feels
like walking through the image with a flashlight.

This observation offers a simple check to verify that the
model has learned the geometry of images. On the other
end, bicubic would make a user feel blind since it is com-
pletely space invariant; and the 4–layers PixelShuffle model
would make users feel confused on the location because the
geometry is not clearly revealed in the projective filters.

More eigen–inputs/outputs:
The images of eigen–input/outputs in the main text con-

tain zooms that cover certain areas of the image, often full of
zeros. In Figure 5 we show more eigen–input/outputs with-
out zooming. Here, we observe that eigen–input/outputs
are sparse and capture few or single features of the image
(e.g. left eye, right eye, etc.) for the largest singular val-
ues. The images of eigen–input/outputs for larger singular
values contain higher–frequencies and cover larger areas.

C. Image–to–Image Translation (I2I)
Projective/receptive filters:
Supplementary material in section D includes a live

demonstration, showing rows and columns of the linear in-
terpreter for CycleGAN[7] architecture and different pre–
trained models4. In Figure 6 we show some snapshots of
the live demonstration.

The filter matrix F (x0) for I2I methods is square. Here,
we observe that filters coefficients in I2I are less sparse
than those in SR methods. In areas where the content does
not show strong changes we observe delta-type filter coeffi-
cients centered in the diagonal. In areas where the content
is converted to a cartoon–style flat color (e.g. blue back-
ground in Photo–to–Label) the input is largely ignored or
spread around a large area. In other areas the coefficients
are strong around the diagonal but often include strong off–
diagonal components (see Figure 6). We observe strong
off–diagonal components in the columns, suggesting that
the network is using both pixel values in current location,
as well as values from other regions of the input image, in
order to obtain the output. We also see strong off–diagonal
components in the rows, suggesting that the network is us-
ing the results of the current location somewhere else in the

4CycleGAN models downloaded from http://efrosgans.
eecs.berkeley.edu/cyclegan/pretrained_models

image. The CycleGAN[7] architecture can achieve this eas-
ily by using instance–normalization layers that make use of
global features (image mean and variance).

As opposed to good SR methods, when using paint-
ing styles (VanGogh and Ukiyoe) the projective filters
(columns) do not follow the geometry of the image and do
not easily reveal the location in the image. In the case of
the Photo–to–Label model we can guess the content and lo-
cation because we see windows with strong neon–style col-
ors. The filter coefficients in painting styles seem to focus
more on textures and color.

In the case of Photo–to–Label style, we do not observe
a peak in the diagonal elements (the location of the cur-
rent pixel) as seen before in SR methods and painting styles
when content is preserved. Instead, we see the shape of win-
dows turning on and off. We believe that this is caused by
the nature of the problem, that is basically trying to perform
segmentation. The Photo–to–Label filter matrix works
like a detection system that creates template boxes in
the output. The background blue color indicates that a seg-
ment has not been detected. The on–and–off effect suggests
that a new segment has been found (e.g. an eave, a win-
dow, a door, etc). The receptive filter (rows) resembles a
Gabor–like template matching filter. The projective filters
(columns) show how single pixels are assigned to a whole
segment in the output. For this problem, templates are sim-
ple and the network is able to create them. This is much
simpler than creating templates for image classes in Ima-
geNet where we did not observe the network following the
same strategy.

Eigen–inputs/outputs:
In Figure 7 we observe how CycleGAN’s eigen–

decompositions show some similar patterns compared to
SR models. Namely, eigen–inputs/outputs are localized for
large singular values and cover larger areas for smaller sin-
gular values. Also, eigen–inputs contain high frequency
stimulus that are translated into colorful textures (Van-
Gogh and Ukiyoe styles) or template boxes (Photo–to–
Label style) in their correspondent eigen–outputs.

Other patterns are clearly different. Namely, the first
eigen–inputs/outputs cover larger areas than SR models,
and they focus more on color, capturing some of the Van-
Gogh style used in Figure 7. The content in eigen–outputs
capture more textures, compared to SR models that focus
more on curves and edges.

In Figure 8 we observe that residuals in CycleGAN mod-
els are larger than residuals observed in SR. The eigen–
outputs of different styles show a clear focus of the network
in generating the colors and objects of the target style. We
can conclude that an SVD analysis helps to interpret a net-
work by showing how they focus on their tasks. This is,
geometric shapes for SR and texture/color styles for I2I.

http://efrosgans.eecs.berkeley.edu/cyclegan/pretrained_models
http://efrosgans.eecs.berkeley.edu/cyclegan/pretrained_models


CycleGAN - VanGogh

COLUMN

ROW

file:///home/pablo/Develop/LinearScope/templates...

1 of 1 3/29/19, 5:55 PM

CycleGAN - Ukiyoe

COLUMN

ROW

file:///home/pablo/Develop/LinearScope/templates...

1 of 1 3/29/19, 5:57 PM

CycleGAN - Photo2Label

COLUMN

ROW

file:///home/pablo/Develop/LinearScope/templates...

1 of 1 3/29/19, 5:59 PM

Figure 6: Screenshots of live demonstration showing columns and rows for the linear interpreter of image–to–image trans-
lation systems. The demonstration reveals strong presence of off-diagonals in the filter matrix. This means that CycleGAN
chooses certain areas in a given image to copy, move and generate textures.

0 0 0
0 0

0
000

0 0
0

Figure 7: Results of the Singular Value decomposition of a linear interpreter applied on CycleGAN[7]–VanGogh I2I net-
work model. Eigen–outputs for large singular values reveal the areas with largest contributions. Compared to SR eigen–
decompositions, the basis is also spatially localized, oriented and bandpass, comparable to wavelet basis[5, 4]. But we
observe that I2I eigen–decomposition is much less sparse than in SR, indicating a more global strategy to solve the problem.

C
yc

le
G

A
N

 -
 U

ki
yo

e
C

yc
le

G
A

N
 -

 P
h

o
to

2
La

b
el

Figure 8: The SVD of I2I models shows how the network focuses on particular styles. Residuals in I2I contribute more than
in SR problems. Eigen–outputs for large singular values help to identify the areas with largest contributions. In Ukiyoe style,
the eigen–output u6 shows an area originally empty in the input, where a new texture has been created. In Photo–to–Label,
the eigen–output u6 shows the creation of a template window segment.



D. Demonstrations

Video material: The following videos are included as
supplementary material:

• FilterMatrix SR.mp4

• FilterMatrix I2I.mp4

Both videos include an English subtitle track embedded in
the MP4 containers. We hope that these comments can
help viewers to better understand the results of the analy-
sis. The subtitle’s font and size are controlled by the video
player and can sometimes obstruct information in the video
frames. Please feel free to enable/disable the subtitle track
to better appreciate the results of the demonstration.

Interactive material: The interactive demonstrations
can be downloaded from:

• Bicubic4x.zip (17 MB)

• 4L-PixelShuffle.zip (17 MB)

• EDSR4x.zip (953 MB)

• CycleGAN-VanGogh (7.5 GB)

• CycleGAN-Ukiyoe (4.4 GB)

• CycleGAN-Photo2Label (4.0 GB)

Please note that large file sizes (mostly I2I) are due to the
fact that we recorded all rows and columns using lossless
compression to avoid misinterpretations.

References
[1] Sebastian Bach, Alexander Binder, Grégoire Montavon,

Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015. 2

[2] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. In Interna-
tional Conference on Learning Representations, 2015. 3, 5

[3] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super–resolution. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, July
2017. 5, 6

[4] Stéphane Mallat. A Wavelet Tour of Signal Processing. Aca-
demic Press, 1998. 8

[5] Bruno A Olshausen and David J Field. Emergence of simple–
cell receptive field properties by learning a sparse code for
natural images. Nature, 381(6583):607–609, 1996. 6, 8

[6] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 2

[7] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image–to–image translation using cycle-consistent
adversarial networks. arXiv preprint arXiv:1703.10593, 2017.
7, 8

https://www.dropbox.com/s/s7223ml92jvlz7y/FilterMatrix_SR.mp4
https://www.dropbox.com/s/63jcvj17kxp61cj/FilterMatrix_I2I.mp4
https://www.dropbox.com/s/rn086hyh13pvuvt/Bicubic4x.zip
https://www.dropbox.com/s/zum5hmtl9smo908/4L-PixelShuffle.zip
https://www.dropbox.com/s/3q6g3hnzmbleuh0/EDSR4x.zip
https://www.dropbox.com/s/7gbrb2vcukx5i18/CycleGAN-VanGogh.zip
https://www.dropbox.com/s/zhpi9hxvao2xbyg/CycleGAN-Ukiyoe.zip
https://www.dropbox.com/s/547y44ao5hccjbk/CycleGAN-Photo2Label.zip

