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A. Clarification of the architecture
The table below summarizes the input-output sizes of our proposed TASED-Net architecture. As mentioned in the paper,

the encoder network of TASED-Net consists of convolutional blocks from S3D [11], an inflated Inception-v1 (GoogLeNet) [8].
The details of 3D inception block are described in the S3D paper [11] and each name of the inception blocks (3a-5b) is from
the original Inception paper [8]. Batch normalization [3] and ReLU [6] follow after each convolutional operations except the
last layer. A sigmoid function is applied after the last convolution layer to produce an intensity map of saliency.

Type Kernel / (Stride) Input size Output size Description

Convolution 7× 7× 7 / (2, 2, 2) 3× 32× 224× 384 64× 16× 112× 192

First Conv-BlockMax-pool 1× 3× 3 / (1, 2, 2) 64× 16× 112× 192 64× 16× 56× 96

Convolution 1× 1× 1 / (1, 1, 1) 64× 16× 56× 96 64× 16× 56× 96

Convolution 3× 3× 3 / (1, 1, 1) 64× 16× 56× 96 192× 16× 56× 96

Max-pool 1× 3× 3 / (1, 2, 2) 192× 16× 56× 96 192× 16× 28× 48 Max-pool in the main data stream
1st Auxiliary pooling 4× 1× 1 / (4, 1, 1) 192× 16× 56× 96 192× 4× 56× 96 Temporal-reduction
2nd Auxiliary pooling 1× 3× 3 / (1, 2, 2) 192× 4× 56× 96 192× 4× 28× 48 Switches-storing (192× 4× 56× 96)

Inception Mixed / (1, 1, 1) 192× 16× 28× 48 480× 16× 28× 48 Mixed 3 Conv (two inception blocks: 3a, 3b)
Max-pool 3× 3× 3 / (2, 2, 2) 480× 16× 28× 48 480× 8× 14× 24 Max-pool in the main data stream

1st Auxiliary pooling 4× 1× 1 / (4, 1, 1) 480× 16× 28× 48 480× 4× 28× 48 Temporal-reduction
2nd Auxiliary pooling 1× 3× 3 / (1, 2, 2) 480× 4× 28× 48 480× 4× 14× 24 Switches-storing (480× 4× 28× 48)

Inception Mixed / (1, 1, 1) 480× 8× 14× 24 832× 8× 14× 24 Mixed 4 Conv (five inception blocks: 4a-4e)
Max-pool 2× 2× 2 / (2, 2, 2) 832× 8× 14× 24 832× 4× 7× 12 Max-pool in the main data stream

1st Auxiliary pooling 2× 1× 1 / (2, 1, 1) 832× 8× 14× 24 832× 4× 14× 24 Temporal-reduction
2nd Auxiliary pooling 1× 2× 2 / (1, 2, 2) 832× 4× 14× 24 832× 4× 7× 12 Switches-storing (832× 4× 14× 24)

Inception Mixed / (1, 1, 1) 832× 4× 7× 12 1024× 4× 7× 12 Mixed 5 Conv (two inception blocks: 5a, 5b)
Convolution 1× 1× 1 / (1, 1, 1) 1024× 4× 7× 12 1024× 4× 7× 12 Re-distribution of information

Transposed convolution 1× 3× 3 / (1, 1, 1) 1024× 4× 7× 12 832× 4× 7× 12 Spatial decoding
Max-Unpool 1× 2× 2 / (1, 2, 2) 832× 4× 7× 12 832× 4× 14× 24 Use the stored switches (832× 4× 14× 24)

Transposed convolution 1× 3× 3 / (1, 1, 1) 832× 4× 14× 24 480× 4× 14× 24 Spatial decoding
Max-Unpool 1× 3× 3 / (1, 2, 2) 480× 4× 14× 24 480× 4× 28× 48 Use the stored switches (480× 4× 28× 48)

Transposed convolution 1× 3× 3 / (1, 1, 1) 480× 4× 28× 48 192× 4× 28× 48 Spatial decoding

Max-Unpool 1× 3× 3 / (1, 2, 2) 192× 4× 28× 48 192× 4× 56× 96
Use the stored switches (192× 4× 56× 96)

(Output size=Quarter-resolution)
Transposed convolution 1× 4× 4 / (1, 2, 2) 192× 4× 56× 96 64× 4× 112× 192 Spatial upsampling

Convolution 2× 1× 1 / (2, 1, 1) 64× 4× 112× 192 64× 2× 112× 192 Temporal-reduction
Transposed convolution 1× 4× 4 / (1, 2, 2) 64× 2× 112× 192 4× 2× 224× 384 Spatial upsampling

Convolution 2× 1× 1 / (2, 1, 1) 4× 2× 224× 384 1× 1× 224× 384 Temporal-reduction

Table 1: Detailed input-output sizes of our proposed TASED-Net architecture. First Conv-Block consists of three
convolution layers and one max-pooling layer. Each name of the inception blocks (3a-5b) is from the original
Inception paper [8]. Two sequential Auxiliary poolings first reduce the temporal dimension of the input feature
map and then store the temporally-reduced switches for each unpooling layers.



B. Additional comparison
We apply our temporally-aggregating design to FCN [5], U-Net [7], and Deeplab [1] to further compare the performance

and justify our architecture. All these architectures have achieved great success in dense prediction tasks. For the FCN and
U-Net, we choose S3D [11] as the backbone. For the Deeplab, we first inflate ResNet-50 in 3D and pre-train it on Kinetics
dataset [4], as presented by Wang et al. [10], and then apply two different versions of Deeplab [1, 2].

Method
Metric NSS CC SIM AUC-J s-AUC

FCN [5] (S3D) 2.435 0.440 0.329 0.890 0.702
U-Net [7] (S3D) 2.555 0.458 0.342 0.890 0.705
Deeplab-v2 [1] (ResNet-50 I3D) 2.382 0.430 0.339 0.893 0.689
Deeplab-v3+ [2] (ResNet-50 I3D) 2.406 0.434 0.335 0.892 0.700
TASED-Net (S3D) 2.706 0.481 0.362 0.894 0.718

Table 2: Comparison of other architectures (backbone network in
bracket) with our temporally-aggregating scheme on the validation set of
DHF1K [9]. It shows that TASED-Net with the proposed Auxiliary pool-
ing is a more effective architecture for video saliency detection.

C. Denser TASED-Net
We provide an experimental comparison of TASED-Net and its denser (or deeper) version. We add two more transposed

convolutional layers to each spatial decoding block in the prediction network of TASED-Net to build this version. The
network size increases from 82MB to 118MB. It is shown that going deeper does not necessarily yield any performance gain,
at least for our case.

Method
Metric NSS CC SIM AUC-J s-AUC

TASED-Net 2.706 0.481 0.362 0.894 0.718
Denser TASED-Net 2.671 0.477 0.357 0.894 0.710

Table 3: Performance of TASED-Net and the denser version of
it on the validation set of DHF1K [9] dataset. Denser TASED-
Net yields slightly worse performance even if it has a larger
number of parameters in the prediction network.

D. Additional qualitative results
We next provide additional qualitative results of TASED-Net and the previously leading state-of-the-art model ACLNet [9]

on the validation set of the DHF1K dataset. All figures will play as videos when clicked in a suitable viewer (Adobe Reader,
etc).
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Figure 1: Qualitative results of our TASED-Net and the main competitive model ACLNet [9] on the DHF1K validation
set (from left to right: Input video, Ground-truth, TASED-Net, and ACLNet). We show results on six videos for which
our model outperforms ACLNet ((a)-(f)), and four videos for which ACLNet outperforms our model ((g)-(i)). As seen
in (a)-(f), TASED-Net attends to the salient moving objects very well, even when there are many background objects.
In (g)-(i), ground-truth fixation points are unstable and do not represent general human gaze behavior well; the number
of fixation points are not enough to produce smooth ground-truth saliency maps for these videos, which suggests that
saliency datasets should be created with more human subjects.
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