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1. Additional qualitative results
We show additional qualitative results for the Basel Face dataset in Figure 1. Please see our supplemental video for further results.
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Figure 1. HoloGAN results when trained on the Basel Face dataset. Top: Five sampled faces (one per row) for an azimuth range of 100°. Bottom:
Five sampled faces for an elevation range of 40°.



Figure 2. Ablation study showing images with changing azimuths (from left to right). The identity regulariser helps learning the full range of poses
(a), preventing the model from ignoring views such as the rear view (b).

2. Additional ablation study

Here we show the effectiveness of the identity regulariser. We find that this regulariser encourages HoloGAN to only use z for the
identity, and use pose 6 more effectively to capture the variety of poses in the dataset. As shown in Figure 2, HoloGAN trained with
the identity regulariser successfully learns the full variation of poses.

3. Linear interpolation

Figure 3 shows the results of interpolating the latent vector z, while keeping the pose fixed.

4. Additional style mixing results

Here we use different latent codes at different resolutions of the 3D features (z; for tensor 8 x8x8, z5 for tensor 16 x 16x 16), and
the same z3 for all 2D features. Figure 4 shows that the deeper features (8 x8x8, controlled by z;) control more global features such
the overall shape, while shallower features (16x 16x 16, controlled by z5) influence more fine-grained details such as gender or makeup
(for CelebA), wind shield or doors (for Cars), pillows or windows (for LSUN bedroom). This observation agrees with Karras et al.
[3]; however, our approach additionally factors out pose from identity, and therefore the global features no longer control poses. Note
that the overall colour and lighting are the same in Figure 4, because we use the same z3 for the 2D features, which control appearance.

5. KID comparisons

In Figure 5, we show generated samples by DCGAN [8], LSGAN [6], WGAN-GP [2] and HoloGAN for three datasets: CelebA, Chairs
and Cars. Compared to other models, HoloGAN produces samples with higher visual fidelity, and offers explicit control over poses
of objects in the generated images.

6. Datasets

Here we provide more information on our training datasets. We list them in increasing order of complexity. All images are centre-cropped,
apart from the Cars dataset, where we make use of the bounding box provided by the dataset, as well as adding extra 500 images crawled
from Google image search. During training, we randomly flip the training images to augment the training data.

Name Type Diff. identities  # Images Resolution Azimuth Elevation Scaling
Basel Face [7] Synthetic Yes 80,000  128x128  220°-320° 70°-110°  None
Cats [11] Real Yes 9,033 64 x64 220°-320°  60°-95° None
CelebA [5] Real Yes 202,599  128x128  220°-320°  60°-95° None
Chairs [1] Synthetic No 406,680 64x64 0°-359°  10°-170°  None
Cars [9] Real Yes 139,714  128x128 0°-359°  60°-95° 0.8-1.5
LSUN bedroom [10] Real Yes 3,033,042  128x128  220°-320°  60°-95°  0.8-1.5

7. Network architecture

Below are the description of our generator and discriminator network. For the 128 x 128 generator:
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Figure 3. Linear interpolation of the latent vector z for fixed poses. Note that the identity is smoothly interpolated while the poses are unchanged.

Layer type Kernel size Stride Activation Normalisation Output dimension
UpConv 3x3x3 2 LRelu AdalN 8 X 8x 8% 256
UpConv 3x3x3 2 LRelu AdalN 16x16x16x128
3D transformation — — — — 16x16x16x128
Conv 3x3x3 1 LRelu — 1616 x16x 64
Conv 3x3x3 1 LRelu — 16 x16x 16 x 64
Concatenate — — — — 16x16 % (16-64)
Conv 1x1 1 LRelu — 16x16x 512
UpConv 4x4 2 LRelu AdaIN 32x32x256
UpConv 4x4 2 LRelu AdalN 64 %64 x 64
UpConv 4x4 2 LRelu AdaIN 128 x 128 x 32
UpConv 4x4 1 Tanh — 128128 x 3




For the 64 <64 generator, we drop the last convolution layer, and use a convolution layer with output size 64 x 64 x 3 as the last layer instead.
For the 128 x 128 discriminator, using either layers ‘(A)’ for real/fake prediction or layers ‘(B)’ for computing the identity loss:

Layer type Kernel size Stride Activation Normalisation Output dimension

Conv 3x3 2 LRelu IN/Spectral 64 x64x128
Conv 3x3 2 LRelu IN/Spectral 32 x32x256
Conv 3x3 2 LRelu IN/Spectral 16x16x512
Conv 3Ix3 2 LRelu IN/Spectral 8x8x1024
(A)FC — — Sigmoid None/Spectral 1

(B) FC — — LRelu None/Spectral 128

B) FC — — Tanh None/Spectral 128

7.1. Style discriminator

In this work, we use the style discriminators in addition to the image discriminator. Instead of classifying images as real or fake, style
discriminators perform the same task but at the feature level across different layers. In particular, style discriminators classify the mean
and standard deviation of the features at different levels [ (which are believed to describe the image “style”).

The style-discriminators are implemented as MLPs with sigmoid activation function for binary classification. For each feature channel
¢, the mean p(®;(x)) and variance o(®;(x)) of features ®;(x) are computed across batch and spatial dimensions independently as:
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8. Training details

We train all of our networks from scratch using the Adam optimizer [4]. We initialise all weights using A/(0, 0.2), and biases as 0.
We use |z| =128 for all datasets, apart from the Cars dataset, where we use |z| =200. Empirically, we find that updating the generator
twice for every update of the discriminator achieves images with the best visual fidelity.

8.1. Pose sampling

During training, we sample poses uniformly to transform the 3D features. The range of views from which we sample from are listed
in Section 6. Note that for the face datasets (Basel, CelebA, Cats), we only sample the frontal hemisphere since the training images
do not include views of the back.

8.2. Learning rate

We use the same learning rate for both the generator G and the discriminator D. In particular, to train images at resolution 64 x 64 pixels, we
use the learning rate of 0.0001, and for images at resolution 128 x 128 pixels, the learning rate is 0.00005. We keep the same learning rate
for the first half of total number of epochs (we train each dataset for 25 epochs), and linearly decay the rate to zero over the remaining half.
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Figure 4. We keep the same z; (columns, controlling 3D features at 8 x8x 8 resolution) and z3 (controlling 2D features), and sample different z>
(rows, controlling 3D features at 16x 16 16 resolution). We do not include label for z3 in the figure.
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Figure 5. Samples from models used to compute the KID score for CelebA (left), Chairs (middle) and Cars (right).



