GraphX-Convolution for Point Cloud Deformation in 2D-to-3D Conversion
(Supplementary)

Anh-Duc Nguyen

Seonghwa Choi

Woojae Kim Sanghoon Lee

Yonsei University

{adnguyen, csh0772,wooyoa, slee}@yonsei.ac.kr

1. Theoretical analysis of GraphX

In this section, we try to supplement some theoretical
background on why we are sure GraphX would work in
the first place. Let p(C') denote the prior distribution of
the category of an object; for e.g., C' can be a chair or a
bed. For each category, there is a wide variety of mod-
els; for instance, a chair can have wheels or legs. Thus,
we use p(M|C') to characterize a specific model given an
item class. Finally, since there can be numerous point cloud
feature representations of a model, let us define p(P|M, C')
to be the distribution of a point in a point cloud of a certain
model in a fixed class. We can see that each random sam-
ple (P1, Py, ..., P,) ~ p(P|M,C) is a possible point cloud
configuration of the given model. We note that a point cloud
here does not restrict to the 3D representation but could be
a cloud of feature vectors as well.

The mixing operation in GraphX takes a point cloud con-
figuration and returns a new one. Let the mixing weights for
a point Y; be w;j,. In mathematical expressions, the mixing
can be written as

Y= wrPy. (1)
k

For the sake of simplicity, we omit the bias. It then follows
that

E[Y;] = E[Y_ wjr Py
k

= Eypin,o)[P] Y Elwj])
k

= nEp(pim,0) [P1E[w;]-

It can be seen that GraphX evaluates the mean of the point
cloud distribution and then scales it. In our implementation,
the original point cloud is drawn from a uniform distribu-
tion, and hence the mean can be estimated by the sample
mean, which explains why the mixing weights learn to av-
erage and scale all the points as shown in Section 4.3. Cer-
tainly, learning the mean may just be the face value, as we

RelU RelLU

(@) (b)
Figure 1. Residual GraphX blocks: (a) ResGraphX and (b) Up-
ResGraphX.

have pointed out when averaging and scaling manually, the
performance became much worse. Nonetheless, this view-
point is interesting because the layer size can be truly in-
dependent from the input point cloud size, which enables
the system to be more scalable. This will be covered in our
upcoming research.

In other problems such as point cloud analysis, when
the point cloud distribution is not trivial like in our case,
the mixing weights can learn a more interesting distribu-
tion. We do not learn separate mixing coefficients but share
them for different models and categories, so they can learn
the joint model p(P, M, C), not just p(P|M, C) like in (2).
In other words, the mixing matrix learns at a distribution
level, which separates GraphX from the graph convolution
or X-conv which only learns at an instance level. How-
ever, because of the stacking of many layers, the theoretical
viewpoint we share here is still very superficial and more
technical details should be elaborated in order to grasp the
true essence of GraphX.

2. Architecture details

The detailed configurations of the image encoding and
point cloud encoding branches are described in Table 1. The
image encoder is the same as in [5]. The point cloud en-
coder has the same number of blocks as the image encoder
(4 in our implementation), and each block comprises of two
FC layers of the same size. We have tried some other VGG
architectures as well, such as VGG16 and VGG19 [4], but
no improvement has been recorded.

There are some implementation details worth pointing
out here. In the formulation of GraphX, we can apply an

Table 1. Architecture details of the image encoding and point cloud encoding networks. <n> x <Name>-<k> stands for a stack of n

<Name> layers with & output channels/features.

pre-block block 1 block 2 block 3 block 4
image encoder 2 x Conv3-16 2 x Conv3-64 | 2x Conv3-128 | 2 x Conv3-256 | 2 x Conv3-512
2 x Conv3-32
point cloud encoder n/a 2 x FC-64 2 x FC-128 2 x FC-256 2 x FC-512

Table 2. Detailed architectures of different variants of the deformation network.

FC ResFC GraphX

ResGraphX UpResGraphX

FC-3 FC-3 FC-3

FC-512 | ResFC-512 | GraphX-2k-512 | ResGraphX-2k-512 | UpResGraphX-500-512
FC-256 | ResFC-256 | GraphX-2k-256 | ResGraphX-2k-256 | UpResGraphX-1k-256
FC-128 | ResFC-128 | GraphX-2k-128 | ResGraphX-2k-128 | UpResGraphX-2k-128

FC-3 FC-3

activation after the mixing and/or exchange the order of the
mixing and fully connected layer. However, while the for-
mer does not have much of an impact on the overall re-
sult, the latter significantly reduces the performance. This
is curiously surprising because except for the bias terms,
the transformed feature is the same in both cases. Due to
the aforementioned reasons, the definition of GraphX is fi-
nalized as in the paper.

The ResGraphX and UpResGraphX architectures are
shown in Figure 1. In both configurations, the first layer
of the main branch is an FC followed by a ReLU. The sec-
ond layer is either a basic GraphX layer in ResGraphX or
the upsampling version of GraphX in UpResGraphX. In the
residual branch, the layer is either an identity, FC or GraphX
depending on the output size and the type of the block. The
ResFC layer has the same spirit as ResGraphX but with the
GraphX layer replaced by an FC.

The architectures of the five variants of the deformation
network used in the paper are tabulated in Table 2. In all
cases except for the UpResGraphX network, the initial point
cloud had 2k points. For the UpResGraphX case, we used
only a point cloud of 250 points, and the cloud doubled the
size after each UpResGraphX layer, which also outputs a
2k-point cloud as other versions.

3. Additional results

This section presents the qualitative results of the sim-
plified UpResGraphX layer that we hypothesized in Sec-
tion 4.3 of the paper. The results are displayed in Table 3.
For better comparison, we also include the results of other
methods in the paper. As can be seen from the table, even
though the model still achieves high CD performance, the
IoU score is the worst among all the competing methods. In
order to make it a practical method, more effort should be
invested to further improve on this baseline.

References

[1] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-
R2N2: A unified approach for single and multi-view 3D ob-

ject reconstruction. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 628—644. Springer,
2016.

[2] H. Fan, H. Su, and L. J. Guibas. A point set generation net-
work for 3D object reconstruction from a single image. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), pages 605-613, 2017.

[3] L.Jiang, S. Shi, X. Qi, and J. Jia. GAL: Geometric adversar-
ial loss for single-view 3D-object reconstruction. In Proceed-
ings of the European Conference on Computer Vision (ECCV),
pages 802-816, 2018.

[4] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[5S] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang.
Pixel2mesh: Generating 3D mesh models from single rgb im-
ages. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 52—67, 2018.

Table 3. Quantitative results of UpResGraphXSim and other benchmarking methods on 13 major categories of ShapeNet. “1” indicates
higher is better. “|” specifies the opposition. Best performance is highlighted in bold.

Category table car chair plane couch firearm lamp watercraft bench speaker cabinet monitor cellphone | mean

3D-R2N2 [1] 1.116 0.845 1432 0.895 1.135 0993 4.009 1.215 1.891 1.507 0.735 1.707 1.137 1.445

PSG [2] 0.517 0333 0.645 0430 0549 0423 1.193 0.633 0.629 0.756 0.439 0.722 0.438 0.593

CD| Pixel2mesh [5] 0.498 0268 0.610 0477 0490 0453 1.295 0.670 0.624 0.739 0.381 0.755 0.421 0.591

Ours (UpResGraphXSim) | 0.383 0.237 0.406 0.165 0.322 0.153 0.606 0.242 0269 0.461 0.307 0.301 0.189 0.311
Ours (UpResGraphX) 0.284 0.1834 0.306 0.116 0.254 0.119 0.523 0.210 0.189 0.419 0.265 0.248 0.155 0.252

3D-R2N2 [1] 0.580 0.836 0.550 0.561 0.706 0.600 0.421 0.610 0.527 0.717 0.772 0.565 0.754 0.631
PSG [?] 0.606 0.831 0.544 0.601 0.708 0.604 0.462 0.611 0.550 0.737 0.771 0.552 0.749 0.640
ToU?T GAL [3] 0.714 0.737 0.700 0.685 0.739 0.715 0.670 0.675 0.709 0.698 0.772 0.804 0.773 0.712

Ours (UpResGraphXSim) | 0.363 0.590 0.416 0.668 0.510 0.660 0.429 0.605 0.482 0455 0.485 0.559 0.658 0.529
Ours (UpResGraphX) 0.605 0.819 0.663 0.758 0.770 0.747 0.516 0.754 0.725 0.708 0.770 0.735 0.857 0.725

