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Abstract

In this supplementary document, we first give a detailed overview of our architectures, baseline implementations and

training procedure in Section 1. Details regarding the data generation and preprocessing can be found in Section 2. Finally,

we provide additional experimental results, both qualitatively and quantitatively in Section 3.

1. Implementation

In this section, we first provide detailed descriptions of the architectures we used for the occupancy and velocity networks

as well as the spatial and temporal encoders. Next, we explain implementation details for the baselines and details regarding

the training process. Finally, we discuss details regarding mini-batch processing for the forward and backward flow.

1.1. Architectures

1.1.1 Occupancy and Velocity Networks

We use similar architectures for the occupancy and velocity networks fx

θ and v
x

θ̂
in all experiments (see Fig. 1). The inputs

for both networks are the latent codes cs and ct provided by the spatial and temporal encoders gsθ and gt
θ̂

as well as Np points.

For both networks, we use five ResNet [6] blocks, each consisting of two fully connected layers with skip connections and

ReLUs [5] as activation functions. For the occupancy network, we adopt the conditional batch normalization (CBN) scheme

from [9] to inject the latent code cs. As we experienced difficulties with CBN and the ODE Solver, we pass the latent code ct

+

(a) Occupancy Network fx

θ

++

(b) Velocity Network v
x

θ̂

Figure 1: Occupancy and Velocity Network Architectures. This figure shows the architectures of the occupancy network

fx

θ and the velocity network v
x

θ̂
. Fig. 1a is adopted from [9] and slightly adjusted to our setting. In both figures, light green

shows input, cyan fully connected layers, and grey other operations.
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provided by the temporal encoder gt
θ̂

through a fully connected layer and add the result to the activation before every ResNet

block for the velocity network. While the occupancy network outputs an occupancy probability for each of the Np points,

the velocity field returns a 3D motion vector for every point in space and time.

1.1.2 Spatial and Temporal Encoders

We use task-specific architectures for the spatial and temporal encoders gsθ and gt
θ̂

(see Fig. 2). For point cloud completion,

we use ResNet variants of PointNet [12] for both encoder networks. For the temporal encoder, we concatenate the L input

point clouds along the last dimension and adjust the input dimension of the PointNet to 3L (Fig. 2a). As the spatial encoder

only encodes the first input point cloud, we can keep the input dimension of 3. Similarly to [9], we use four ResNet blocks

with additional pooling and expansion layers to enable inter-layer communication. The final feature vectors of dimension

512 are obtained by passing the output of the last ResNet block through a max-pooling operation and a 512-dimensional fully

connected layer.

For reconstruction from image sequences, we use a 3D convolutional network with 6 convolutional layers as the temporal

encoder (Fig. 2b). For the spatial encoder, we use a pre-trained ResNet-18 [6]. In both networks, we add a final fully

connected layer to obtain the final 256-dimensional feature vectors ct and cs.

For the correspondence and interpolation experiments, we only use the temporal encoder as no spatial reconstruction has

to be performed. We use a single PointNet encoder for both the start and the end point cloud and concatenate the final outputs

(Fig. 2c). The weights are shared in siamese fashion. We choose the dimension of the concatenated latent code ct to be

512. As we use two corresponding point clouds as input for the interpolation task, we can either use the same encoder or

the temporal encoder from the point cloud completion experiment with L = 2. Again, we choose the dimension of the final

output to be 512.

1.2. Baselines

In all reconstruction experiments, we compare against ONet 4D, the 4D variant of Occupancy Networks (ONet) [9]. We

keep the architecture from the original publication except that we adjust the input dimension from 3 to 4. This way, we are

able to use points sampled in space and time as input.

In addition, we compare in all reconstruction experiments against PSGN 4D, the 4D variant of Point Set Generation

Networks [4]. We adopt a network architecture consisting of four fully connected layers with hidden dimension of size 512
and ReLUs as activations as it was shown to improve results compared against the more complex 2-branch version from

the original publication [9]. We adjust the output dimension from 1024 × 3 to 1024 × L × 3 because we are interested in

producing trajectories of 3D points instead of single 3D points. PSGN is trained by minimizing the Chamfer distance between

the predicted and target points, and there are two ways to transfer this to the temporal domain: a) We calculate the Chamfer

distances in R
3 for all L time steps individually and sum over them or b) we reshape the predicted points to dimension 3L

and calculate the Chamfer distance for these predicted and the ground truth trajectories in R
3L. Note that while the first

variant does not use any correspondences over time during training, the second variant does. To distinguish between the two

variants, we name the latter one PSGN 4D (w/ correspond.). We compare against PSGN 4D in all reconstruction experiments

and against PSGN 4D (w/ correspond.) in both experiments on the D-FAUST dataset.

1.3. Training Details

For all experiments, we use the Adam optimizer [8] with learning rate γ = 10−4 and train with a batch size of 16. We

evaluate all models on the validation set every 1,200 iterations during training. To provide a fair comparison in the final

evaluation on the test set, we use the model state which performed best on the validation set.

For solving the differential equations, we use the Dormand–Prince method “dopri5” [3] with relative and absolute error

tollerances of 10−3 and 10−5, respectively.

For every training example, we sample a fixed number of points in space and time to calculate the loss. For the recon-

struction loss Lrecon, we sample 512 points at time 0 and 512 points at a random time step t > 0. All points at the respective

time are sampled uniformly in the bounding volume of the 3D shapes. For the correspondence loss Lcorr, we sample 100
trajectories each consisting of L points in R

3. The start points of the trajectories are uniformly sampled on the start mesh.

We implemented the OFlow variants and all baselines in PyTorch 1.0.1

1https://pytorch.org/

https://pytorch.org/
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(a) Point cloud completion. We concatenate the L noisy input point clouds each consisting of M points along the last dimension.

This tensor is passed through four ResNet blocks with skip connections and additional max-pooling and expansion layers. The final

512-dimensional feature vector is obtained by passing the output of the final ResNet block through a max-pooling operation and a fully

connected layer.

(b) 4D reconstruction from Image Sequences. The L = 17 input RGB images are concatenated to obtain a tensor of size 3×17×224×
224. We pass the tensor through six convolutional layers which downsample the input while increasing the number of feature maps. The

final feature vector is obtained by passing the output through a 256-dimensional fully connected layer.

+ +

+ +

(c) Shape Matching. Both the start and the end point cloud is passed through the same PointNet in a siamese fashion. The networks

consist of four ResNet blocks with additional max-pooling and expansion operations. We obtain the final 512-dimensional feature vector

by concatenating the two latent codes for the start and end point cloud.

Figure 2: Temporal Encoder. This figure shows architectures of the temporal encoder gt
θ̂

for the point cloud completion

(Fig. 2a), 4D reconstruction from image sequences (Fig. 2b), and the shape matching experiments (Fig. 2c). In all figures,

light green shows input, cyan fully connected layers, dark blue convolutional layers, red concatenation and pooling layers,

and grey other operations.



(a) Backward flow of velocity network v
θ̂

(b) Forward flow of adjusted velocity network v̂
θ̂

Figure 3: Batch Processing. The figure illustrates how we reformulate the backward flow of v
θ̂

as the forward flow of the

adjusted velocity network v̂
θ̂

(1) to perform batch processing of points pi with different time values τi.

1.4. Batch Processing for the ODE Solver

For both Lrecon and Lcorr we use the adjoint sensitivity method [2, 11] to obtain gradients. We adjust the GPU imple-

mentation provided by Chen et al. [2] to our needs.2 While batch-wise processing is already implemented for the forward

flow Φ
θ̂
, we make use of a small trick for the backward flow Ψ

θ̂
as follows.

Let pi be sampled points at random times τi ∈ (0, T ]. During training, we get the location of these points for time 0 by

calculating the backward flow using the parameterized velocity network v
θ̂
. The time values τi are not equal for all points

pi, so that batch processing is not as straightforward as for the forward flow. To obtain a batch-wise implementation, we

reformulate this problem as solving the forward flow from time 0 to time τi using the adjusted velocity network

v̂
θ̂
(pi, t) := −v

θ̂
(pi, τi − t) (1)

It results in exactly the same transformation (Fig. 3) while allowing us to use the same start time 0 for all points pi. This

way, we are able to use the same batch-wise implementation as for the forward flow.

1.5. Additional Argument Passing to the ODE Solver

In the reconstruction and interpolation experiments, we condition the velocity network v
x

θ̂
on some input x in the form of

a latent code ct provided by the temporal encoder gt
θ̂

(see Section 1.1.2). In the following, we describe how this can be done

although the implementation of Chen et al. [2] allows only for passing points and time values for which the forward flow is

solved.

To condition the velocity network on ct, we first reshape the points tensor of dimension |B| × Np × 3 to |B| × (3Np).
Next, we can concatenate the latent code ct to obtain the input tensor of size |B| × (3Np + cdim) where cdim indicates the

dimension of ct. As the ODE Solver expects the same output dimension of the velocity network v
x

θ̂
, we reshape its output to

|B| × 3Np and fill the remaining values with zeros to obtain an output tensor of the same size |B| × (3Np + cdim). The zero

values for the coordinates corresponding to the latent code ct make sure that the ODE Solver only considers the 3D points

for evaluating the forward and backward flow and for choosing the appropriate step size.

2. Data Generation and Preprocessing

In this section, we describe the generation process of the Warping Cars dataset used in the reconstruction experiments as

well as relevant data preprocessing steps.

2.1. Data Generation

To obtain the Warping Cars dataset, we use the ShapeNet [1] “car” category and apply random displacement fields to

obtain a warping motion. To obtain continuous displacement fields, we first sample random Gaussian displacement vectors

2available via https://github.com/rtqichen/torchdiffeq

https://github.com/rtqichen/torchdiffeq


with mean µ = 0 and standard deviation σ = 0.15 in a 3 × 3 × 3 × 5 grid. Here, the first 3 coordinates correspond to the

spatial dimensions and the last coordinate corresponds to the temporal dimension. We then interpolate between these discrete

displacement vectors using radial basis functions (RBFs) [10] to obtain a continuous displacement field in R
3 × [0, T ]. To

transform the input meshes, we simply apply this continuous displacement field to each vertex of the mesh individually.

2.2. Data Preprocessing

For detailed descriptions of the sampling process, we refer to [9] and restrict the discussion to the main changes.

To normalize the data while preserving the motion depicted in a sequence, we shift and scale all meshes belonging to the

same sequence with respect to the bounding box of the start mesh. In addition, we set the end time T = 1 so that the time

values lie between 0 and 1. For obtaining trajectories of points on the mesh, we first sample uniformly on the start mesh. We

can track them over time by representing the points using trilinear coordinates with respect to the three vertices spanning the

face on which the points lie.

As in [9], we perform offline sampling for computational efficiency. To this end, we perform sampling before training,

saving the points to files instead of sampling online during training. To do this, we save 100,000 points uniformly sampled

in the bounding volume and 100,000 points uniformly sampled on the mesh for all L time steps to files. For the former, we

also save the respective occupancy values and for the latter, we save corresponding points so that we obtain corresponding

trajectories over time.

3. Experiments

In this section we provide additional quantitative and qualitative results for the representation power (Section 3.1), re-

construction (Section 3.2 and Section 3.3), interpolation (Section 3.4), and generative experiments (Section 3.5). We further

investigate differences of the OFlow and ONet 4D representations and additional properties of OFlow in Section 3.6.

3.1. Representation Power

Num. Seq. Seq. Length IoU Chamfer Correspond.

32 17 91.2 % 0.032 0.061

10 50 88.5 % 0.043 0.085

Table 1: Additional Representation Power Experi-

ments. We report IoU (higher is better), Chamfer

distance (lower is better), and correspondence distance

(lower is better) for representation power experiments

with different numbers and lengths of sequences.

The goal of the representation power experiment is to in-

vestigate how well OFlow can represent 3D shapes in motion.

To disentangle the influence of the spatial and temporal en-

coders gsθ and gt
θ̂

from the representation power, we trained

OFlow to represent single sequences of length L = 50 with no

input at all (see main publication) and to represent 10 differ-

ent sequences of length L = 50 with IDs as input. In addition,

we also trained a model to represent 32 sequences of length

L = 17 with point cloud input similar to the 4D point cloud

completion training setup without adding Gaussian noise.

Table 1 shows quantitative results of the additional representation power experiments with different numbers of sequences

and lengths of sequences. Although slightly decreased compared to the single sequence setting from the main publication

(IoU of 93%), the results indicate that OFlow can represent the more complex data well (IoU scores above 88%) regardless

of the input.

3.2. Point Cloud Completion

In Table 2, 3, and 4 we show detailed results for the point cloud completion experiments from Section 4.2 in the main pub-

lication. We evaluate IoU, Chamfer distance, and the correspondence distance in 17 equally spaced time steps between 0 and

1. We observe that the OFlow variants outperform ONet 4D in terms of IoU and achieve lower Chamfer and correspondence

distances than PSGN 4D and ONet 4D over all time steps on the D-FAUST dataset. On the synthetic warping cars dataset,

we can see that PSGN 4D obtains the lowest Chamfer distance which comes as no surprise because this method, in contrast

to OFlow, is directly trained on this metric.

3.3. 4D Reconstruction from Image Sequences

The complete results for the 4D reconstruction from image sequences can be found in Table 5, 6, and 7. The relative

results are similar to the point cloud completion experiment with the OFlow variants achieving the best IoU scores and lowest

correspondence distances. Depending on the dataset, either OFlow or PSGN 4D obtains the lowest Chamfer distances which

comes as no surprise because PSGN 4D directly optimizes this metric. As indicated in Section 4.3 of the main publication,



(a) (b)

Figure 4: 4D Point Cloud Completion (D-FAUST). This figure shows two examples 4a and 4b from the test set of the point

cloud completion experiment on the D-FAUST dataset. For both examples, we show the input as well the output of OFlow ,

ONet 4D, and PSGN 4D for 9 equally spaced time steps between 0 and 1.



IoU Chamfer Correspond.

PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - - 76.3 % 80.5 % 83.1 % 0.110 0.104 0.090 0.070 0.059 0.075 0.068 - 0.068 0.057

0.0625 - - 77.1 % 80.8 % 83.1 % 0.108 0.103 0.087 0.069 0.059 3.466 0.073 - 0.074 0.062

0.125 - - 77.5 % 80.7 % 82.8 % 0.107 0.102 0.085 0.069 0.060 3.496 0.081 - 0.085 0.069

0.1875 - - 77.8 % 80.5 % 82.5 % 0.107 0.102 0.084 0.070 0.061 3.447 0.090 - 0.096 0.077

0.25 - - 78.0 % 80.3 % 82.2 % 0.106 0.101 0.083 0.071 0.062 3.438 0.097 - 0.105 0.083

0.3125 - - 78.2 % 80.1 % 82.0 % 0.106 0.101 0.082 0.072 0.063 3.450 0.102 - 0.113 0.088

0.375 - - 78.3 % 80.0 % 81.8 % 0.106 0.101 0.082 0.072 0.064 3.442 0.106 - 0.120 0.092

0.4375 - - 78.4 % 79.9 % 81.6 % 0.106 0.101 0.081 0.073 0.064 3.415 0.109 - 0.125 0.095

0.5 - - 78.5 % 79.8 % 81.4 % 0.106 0.101 0.081 0.073 0.065 3.495 0.111 - 0.130 0.098

0.5625 - - 78.5 % 79.8 % 81.3 % 0.107 0.101 0.081 0.074 0.066 3.399 0.111 - 0.133 0.101

0.625 - - 78.4 % 79.8 % 81.1 % 0.107 0.101 0.082 0.074 0.066 3.450 0.112 - 0.136 0.103

0.6875 - - 78.4 % 79.8 % 81.0 % 0.107 0.100 0.082 0.074 0.067 3.409 0.112 - 0.138 0.106

0.75 - - 78.2 % 79.7 % 80.8 % 0.108 0.100 0.083 0.075 0.068 3.441 0.112 - 0.141 0.108

0.8125 - - 78.1 % 79.6 % 80.6 % 0.108 0.100 0.083 0.075 0.069 3.424 0.112 - 0.143 0.111

0.875 - - 77.8 % 79.3 % 80.3 % 0.109 0.101 0.085 0.076 0.070 3.429 0.113 - 0.147 0.114

0.9375 - - 77.4 % 78.8 % 80.0 % 0.110 0.101 0.086 0.078 0.071 3.385 0.115 - 0.152 0.119

1.0 - - 76.9 % 78.2 % 79.5 % 0.113 0.103 0.089 0.081 0.073 3.309 0.120 - 0.160 0.125

mean - - 77.9 % 79.9 % 81.5 % 0.108 0.101 0.084 0.073 0.065 3.234 0.102 - 0.122 0.094

Table 2: Point Cloud Completion for Seen Individuals (D-FAUST). We report IoU, Chamfer distance, and correspondence

distance for all 17 time steps for the point cloud completion experiment for the test set consisting of seen individuals (but

unseen motions) of the D-FAUST dataset. As both PSGN 4D variants output point sets without connectivity, IoU cannot

be measured for these methods. ONet 4D only predicts occupancy probabilities for 4D points without any correspondence

information between time values, so that no correspondence distance can be calculated.

IoU Chamfer Correspond.

PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - - 64.8 % 70.4 % 74.2 % 0.130 0.121 0.148 0.091 0.077 0.104 0.093 - 0.093 0.077

0.0625 - - 65.7 % 70.7 % 74.1 % 0.129 0.120 0.143 0.090 0.077 3.261 0.098 - 0.098 0.082

0.125 - - 66.2 % 70.6 % 73.8 % 0.127 0.119 0.141 0.090 0.078 3.281 0.105 - 0.108 0.089

0.1875 - - 66.5 % 70.4 % 73.4 % 0.127 0.118 0.139 0.091 0.079 3.239 0.112 - 0.117 0.096

0.25 - - 66.7 % 70.2 % 73.0 % 0.126 0.118 0.138 0.092 0.081 3.225 0.120 - 0.127 0.102

0.3125 - - 66.9 % 70.0 % 72.7 % 0.125 0.118 0.137 0.093 0.082 3.243 0.126 - 0.135 0.108

0.375 - - 67.0 % 69.8 % 72.4 % 0.125 0.119 0.137 0.094 0.083 3.231 0.130 - 0.143 0.113

0.4375 - - 67.1 % 69.7 % 72.2 % 0.125 0.119 0.136 0.095 0.084 3.202 0.134 - 0.149 0.117

0.5 - - 67.2 % 69.6 % 72.0 % 0.125 0.119 0.136 0.095 0.085 3.285 0.137 - 0.155 0.121

0.5625 - - 67.3 % 69.6 % 71.9 % 0.125 0.119 0.136 0.096 0.085 3.190 0.140 - 0.160 0.124

0.625 - - 67.3 % 69.5 % 71.8 % 0.125 0.119 0.136 0.096 0.086 3.245 0.142 - 0.164 0.127

0.6875 - - 67.2 % 69.4 % 71.7 % 0.125 0.119 0.137 0.096 0.086 3.208 0.143 - 0.168 0.130

0.75 - - 67.1 % 69.4 % 71.5 % 0.126 0.119 0.138 0.097 0.087 3.236 0.145 - 0.172 0.133

0.8125 - - 66.9 % 69.2 % 71.4 % 0.126 0.119 0.139 0.098 0.087 3.216 0.147 - 0.176 0.136

0.875 - - 66.6 % 68.9 % 71.3 % 0.127 0.119 0.141 0.099 0.088 3.226 0.149 - 0.181 0.140

0.9375 - - 66.3 % 68.5 % 71.0 % 0.128 0.120 0.143 0.100 0.089 3.184 0.153 - 0.187 0.145

1.0 - - 65.8 % 67.9 % 70.7 % 0.130 0.121 0.146 0.102 0.090 3.116 0.157 - 0.195 0.150

mean - - 66.6 % 69.6 % 72.3 % 0.127 0.119 0.140 0.095 0.084 3.041 0.131 - 0.149 0.117

Table 3: Point Cloud Completion for Unseen Individual (D-FAUST). We report IoU, Chamfer distance, and correspon-

dence distance for all 17 time steps for the point cloud completion experiment for the unseen individual of the D-FAUST

dataset.

both the quantitative and qualitative results show that reconstruction from image sequences is a harder task than point cloud

completion. Fig. 10 shows an example of a failure case for OFlow: as we sample the view point randomly, extreme lighting

conditions and dominant occlusions make it very hard to correctly infer the complex motions.

3.4. Interpolation

Figure 8: Interpolation Encoder Comparison. We

show the correspondence distance over time for the inter-

polation experiment for the linear interpolation baseline

and OFlow with two different encoding schemes.

The goal of the interpolation experiment is to investigate

to which degree OFlow can be used for shape interpolation.

The task is to find a continuous transformation between start

and end mesh MS =
(

{vi
S}i, F

)

and ME =
(

{vi
E}i, F

)

where the two shapes have corresponding vertices v
i
S and

v
i
E and the same faces F . As both, the start and the end

shape are given in this task, we can predict a transforma-

tion from MS to ME as well as the other way round, from

ME to MS . The predictions for the first case are given by

M t
forward =

(

{Φ
θ̂
(vi

S , t)}i, F
)

. For predicting the vertex lo-

cations from the end to the start mesh, we propagate the ver-

tices vi
E from time t = 1 backwards to time t using the back-

ward flow Ψ
θ̂
. Let Ψ

θ̂
(p, 1, t) indicate the position of point p



IoU Chamfer Correspond.

PSGN 4D ONet 4D OFlow PSGN 4D ONet 4D OFlow PSGN 4D ONet 4D OFlow

time step

0.0 - 73.7 % 80.9 % 0.146 0.165 0.117 0.095 - 0.080

0.0625 - 73.7 % 78.4 % 0.146 0.165 0.130 4.188 - 0.138

0.125 - 71.6 % 74.6 % 0.152 0.178 0.149 4.018 - 0.210

0.1875 - 69.5 % 71.9 % 0.157 0.191 0.162 4.103 - 0.258

0.25 - 68.9 % 70.9 % 0.159 0.195 0.166 4.230 - 0.275

0.3125 - 69.3 % 71.3 % 0.157 0.194 0.165 4.138 - 0.269

0.375 - 69.7 % 71.6 % 0.157 0.191 0.164 4.192 - 0.266

0.4375 - 69.6 % 71.1 % 0.158 0.190 0.165 4.219 - 0.279

0.5 - 69.2 % 70.9 % 0.159 0.191 0.166 4.095 - 0.289

0.5625 - 69.7 % 70.9 % 0.157 0.187 0.166 4.167 - 0.289

0.625 - 70.1 % 70.5 % 0.156 0.184 0.169 4.068 - 0.293

0.6875 - 69.3 % 69.2 % 0.158 0.189 0.176 4.140 - 0.313

0.75 - 68.6 % 68.1 % 0.160 0.193 0.182 4.043 - 0.330

0.8125 - 69.2 % 67.8 % 0.159 0.190 0.184 4.151 - 0.334

0.875 - 69.9 % 67.3 % 0.157 0.187 0.188 4.126 - 0.344

0.9375 - 68.1 % 65.3 % 0.160 0.202 0.201 4.022 - 0.387

1.0 - 64.4 % 62.0 % 0.172 0.232 0.222 4.066 - 0.462

mean - 69.7 % 70.7 % 0.157 0.190 0.169 3.886 - 0.283

Table 4: Point Cloud Completion (Warping Cars). We report IoU, Chamfer distance, and correspondence distance for all

17 time steps for the test set of the warping cars dataset.

(a) (b)

Figure 5: 4D Point Cloud Completion (Warping Cars). This figure shows two examples from the test set of the point cloud

completion experiment on the warping cars dataset. For both examples, we show the input as well the output of OFlow, ONet

4D, and PSGN 4D for 9 equally spaced time steps between 0 and 1.



IoU Chamfer Correspond.

PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - - 44.6 % 58.4 % 60.5 % 0.252 0.264 0.343 0.181 0.160 0.203 0.219 - 0.167 0.158

0.0625 - - 44.7 % 58.4 % 60.5 % 0.252 0.263 0.343 0.182 0.160 2.717 2.616 - 0.177 0.163

0.125 - - 44.6 % 58.3 % 60.5 % 0.252 0.264 0.343 0.182 0.160 2.678 2.738 - 0.194 0.172

0.1875 - - 44.6 % 58.0 % 60.4 % 0.253 0.264 0.343 0.184 0.161 2.732 2.661 - 0.214 0.182

0.25 - - 44.5 % 57.7 % 60.3 % 0.254 0.265 0.343 0.186 0.162 2.783 2.707 - 0.235 0.192

0.3125 - - 44.4 % 57.4 % 60.2 % 0.255 0.265 0.344 0.188 0.163 2.761 2.753 - 0.256 0.203

0.375 - - 44.3 % 57.0 % 60.0 % 0.256 0.265 0.344 0.190 0.164 2.721 2.791 - 0.276 0.213

0.4375 - - 44.2 % 56.7 % 59.9 % 0.256 0.265 0.345 0.191 0.165 2.775 2.771 - 0.294 0.222

0.5 - - 44.1 % 56.4 % 59.7 % 0.257 0.265 0.346 0.193 0.166 2.750 2.721 - 0.311 0.231

0.5625 - - 44.0 % 56.1 % 59.6 % 0.258 0.266 0.347 0.195 0.167 2.710 2.711 - 0.325 0.240

0.625 - - 43.9 % 55.8 % 59.4 % 0.259 0.266 0.349 0.197 0.168 2.678 2.719 - 0.338 0.247

0.6875 - - 43.8 % 55.6 % 59.2 % 0.260 0.266 0.350 0.198 0.169 2.725 2.758 - 0.349 0.254

0.75 - - 43.7 % 55.4 % 59.1 % 0.261 0.267 0.352 0.199 0.170 2.767 2.793 - 0.357 0.261

0.8125 - - 43.5 % 55.3 % 58.9 % 0.262 0.267 0.353 0.200 0.171 2.707 2.749 - 0.364 0.267

0.875 - - 43.4 % 55.1 % 58.6 % 0.263 0.267 0.354 0.201 0.173 2.710 2.797 - 0.369 0.273

0.9375 - - 43.2 % 55.0 % 58.4 % 0.264 0.266 0.356 0.202 0.174 2.704 2.716 - 0.371 0.278

1.0 - - 43.0 % 54.9 % 58.1 % 0.265 0.267 0.357 0.203 0.175 2.671 2.633 - 0.373 0.283

mean - - 44.0 % 56.6 % 59.6 % 0.258 0.265 0.348 0.193 0.166 2.576 2.580 - 0.292 0.226

Table 5: 4D Reconstruction from Image Sequences for Seen Individuals (D-FAUST). The table shows IoU, Chamfer

distance, and correspondence distance for the 17 time steps evaluated on the test set of seen individuals (but unseen motions)

of the D-FAUST dataset. IoU cannot be measured for PSGN 4D due to missing connectivity information and for ONet 4D,

correspondence distances cannot be calculated as no correspondence information is predicted.

IoU Chamfer Correspond.

PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - - 36.2 % 42.9 % 43.8 % 0.302 0.295 0.387 0.285 0.269 0.247 0.247 - 0.286 0.281

0.0625 - - 36.3 % 43.0 % 43.8 % 0.302 0.296 0.388 0.285 0.269 2.590 2.505 - 0.293 0.286

0.125 - - 36.3 % 43.0 % 43.8 % 0.305 0.298 0.388 0.285 0.269 2.556 2.624 - 0.307 0.296

0.1875 - - 36.3 % 42.9 % 43.8 % 0.306 0.299 0.389 0.285 0.270 2.606 2.553 - 0.324 0.309

0.25 - - 36.3 % 42.9 % 43.7 % 0.308 0.301 0.389 0.286 0.271 2.652 2.603 - 0.342 0.322

0.3125 - - 36.3 % 42.8 % 43.7 % 0.309 0.303 0.390 0.287 0.271 2.638 2.644 - 0.361 0.335

0.375 - - 36.2 % 42.6 % 43.6 % 0.311 0.304 0.391 0.288 0.272 2.605 2.685 - 0.379 0.349

0.4375 - - 36.1 % 42.5 % 43.5 % 0.312 0.306 0.392 0.289 0.273 2.664 2.667 - 0.396 0.361

0.5 - - 36.0 % 42.4 % 43.4 % 0.313 0.308 0.393 0.290 0.274 2.642 2.621 - 0.412 0.374

0.5625 - - 35.9 % 42.3 % 43.3 % 0.314 0.310 0.395 0.291 0.275 2.604 2.617 - 0.426 0.385

0.625 - - 35.8 % 42.2 % 43.2 % 0.315 0.311 0.396 0.292 0.277 2.575 2.626 - 0.438 0.396

0.6875 - - 35.6 % 42.1 % 43.1 % 0.316 0.312 0.397 0.294 0.278 2.619 2.660 - 0.449 0.406

0.75 - - 35.5 % 42.0 % 43.0 % 0.318 0.314 0.398 0.295 0.279 2.658 2.696 - 0.458 0.416

0.8125 - - 35.3 % 41.9 % 42.9 % 0.318 0.315 0.400 0.296 0.280 2.606 2.660 - 0.465 0.426

0.875 - - 35.1 % 41.8 % 42.7 % 0.318 0.316 0.401 0.297 0.282 2.611 2.705 - 0.471 0.434

0.9375 - - 34.9 % 41.7 % 42.6 % 0.319 0.316 0.402 0.298 0.283 2.604 2.632 - 0.476 0.442

1.0 - - 34.7 % 41.6 % 42.4 % 0.319 0.316 0.403 0.299 0.284 2.578 2.550 - 0.479 0.449

mean - - 35.8 % 42.4 % 43.3 % 0.312 0.307 0.394 0.291 0.275 2.474 2.488 - 0.398 0.369

Table 6: 4D Reconstruction from Image Sequences on Unseen Individual (D-FAUST). We show IoU, Chamfer distance,

and correspondence distance for all 17 time steps evaluated on the test set of the unseen individual of the D-FAUST dataset.

from time t = 1 at time t ≤ 1 when following the velocity field v
θ̂
(·, ·) backwards in time. The backward predic-

tions are then M t
backward =

(

{Ψ
θ̂
(vi

E , 1, t)}i, F
)

. We obtain our final predictions by interpolating between the two pre-

dictions:

M t
pred =

(

{(1− t) · Φ
θ̂
(vi

S , t) + t ·Ψ
θ̂
(vi

E , 1, t)}i, F
)

(2)

In Fig. 8 we show a comparison of OFlow with two different encoder architectures and the linear interpolation baseline.

As discussed in Section 1.1.2, the start and end point clouds can either be encoded in a siamese fashion by encoding each

point cloud individually or by concatenating the start and end locations. The figure shows that encoding the point clouds

individually with the same network achieves slightly better results. This comes as a surprise as this encoding scheme does

not directly use the correspondences between the start and end point clouds.

In Fig. 9 we show additional qualitative results from the test set of the interpolation experiment. They show that, in

contrast to linear interpolation, OFlow is able to capture the non-linear motion of the non-rigid body shapes from the D-

FAUST dataset.

3.5. Probabilistic Latent Variable Model

We further conducted experiments investigating the generative capabilities of our representation. For this, we slightly

adjust the spatial and temporal encoders gsθ and gt
θ̂

for 4D point cloud completion to predict means and log standard deviations

(µs, log σs) and (µt, log σt) of Gaussian distributions qsθ(z|x) and qt
θ̂
(z|x) instead of latent codes cs and ct. We then obtain

the spatial and temporal latent codes zs and zt for conditioning the occupancy and velocity networks by sampling from the

resulting distributions qsθ and qt
θ̂
. In contrast to having only one latent space, this decoupling of shape and motion allows us

to sample spatial and temporal latent codes individually.



IoU Chamfer Correspond.

PSGN 4D ONet 4D OFlow OFlow (w/ cor.) PSGN 4D ONet 4D OFlow OFlow (w/ cor.) PSGN 4D ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - 67.2 % 71.2 % 72.6 % 0.191 0.213 0.185 0.169 0.144 - 0.136 0.125

0.0625 - 62.9 % 66.6 % 67.7 % 0.212 0.251 0.218 0.198 4.277 - 0.257 0.250

0.125 - 57.7 % 60.7 % 61.0 % 0.239 0.297 0.260 0.240 4.191 - 0.409 0.405

0.1875 - 54.6 % 57.2 % 56.9 % 0.257 0.326 0.286 0.270 4.151 - 0.508 0.508

0.25 - 53.9 % 56.5 % 55.9 % 0.261 0.332 0.290 0.277 4.180 - 0.531 0.531

0.3125 - 54.7 % 57.6 % 57.0 % 0.256 0.326 0.280 0.269 4.141 - 0.502 0.499

0.375 - 55.1 % 58.2 % 57.7 % 0.253 0.322 0.274 0.263 4.214 - 0.489 0.482

0.4375 - 54.3 % 57.1 % 56.9 % 0.258 0.328 0.281 0.267 4.154 - 0.522 0.511

0.5 - 53.7 % 56.2 % 56.2 % 0.262 0.334 0.289 0.273 4.344 - 0.552 0.542

0.5625 - 54.0 % 56.6 % 56.5 % 0.259 0.332 0.287 0.271 4.111 - 0.549 0.541

0.625 - 54.5 % 57.1 % 56.8 % 0.255 0.329 0.285 0.270 4.097 - 0.539 0.533

0.6875 - 54.0 % 56.3 % 56.0 % 0.258 0.335 0.292 0.277 4.254 - 0.555 0.552

0.75 - 53.3 % 55.3 % 54.9 % 0.262 0.341 0.299 0.286 4.201 - 0.574 0.574

0.8125 - 53.6 % 55.7 % 55.2 % 0.259 0.338 0.297 0.285 4.092 - 0.559 0.561

0.875 - 54.6 % 56.8 % 56.4 % 0.252 0.329 0.288 0.276 4.160 - 0.521 0.524

0.9375 - 54.4 % 56.4 % 56.0 % 0.255 0.333 0.291 0.279 4.221 - 0.527 0.530

1.0 - 52.1 % 53.5 % 52.9 % 0.275 0.356 0.314 0.303 4.200 - 0.612 0.616

mean - 55.6 % 58.2 % 58.0 % 0.251 0.319 0.277 0.263 3.949 - 0.491 0.487

Table 7: 4D Reconstruction from Image Sequences (Warping Cars). We report IoU, Chamfer distance, and correspon-

dence distance for all 17 time steps for the test set of the warping cars dataset.

We combine the reconstruction and correspondence loss with the KL-divergence between the predicted and prior distribu-

tions to optimize a lower bound to the negative log-likelihood of our generative model:

Lgenerative

(

θ, θ̂
)

= Lrecon

(

θ, θ̂
)

+ Lcorr

(

θ̂
)

+
β

|B|

∑

x∈B

(KL(qsθ(z|x), p
s
0
) + KL(qt

θ̂
(z|x), pt

0
)) (3)

We choose the prior distributions ps
0

and pt
0

to be Gaussian distributions. The hyperparameter β can be interpreted as a

weighting between the reconstruction and the regularization term [7]. In our experiments we set β := 10−4.

Fig. 11 shows a t-SNE embedding of the motion codes of the training examples of the D-FAUST dataset. Fig. 12 shows

latent shape and motion interpolations. We show the interpolation between two shape samples z0s and z1s with a fixed motion

sample zt in Fig. 12a. Similarly, we show the interpolation between two motion samples z0t and z1t with a fixed shape sample

zs in Fig. 12b. Finally, in Fig. 13 we show three examples of the motion transfer experiment. For this, we select a shape S

and a sequence x from the D-FAUST dataset. We then encode the motion of sequence x to latent code zt (predicted mean

of qt
θ̂
(x)) and apply this motion to shape S. We are able to apply motion zt directly to the ground truth shape S due to our

vector field-based motion representation.

The results show that OFlow is able to learn a meaningful latent space representation. The decoupling of shape and motion

allows to encode and sample the two components individually. This flexibility enables OFlow to be used in various tasks

ranging from shape or motion interpolation to motion transfer.

A limiting factor of this approach is that motion transfers could not work for completely different shapes, e.g. a human

upside-down, as we do not condition the motion on the shape. However, the simple solution to condition the motion distribu-

tion on the drawn shape sample would drastically reduce the flexibility and variety of drawn samples. We plan to investigate

how to combine these approaches in future work.

3.6. Additional Comparisons and Experiments

In the following we compare the OFlow and ONet 4D representation (Section 3.6.1), analyze the connectivity-preserving

property of OFlow (Section 3.6.2) and show that it can be trained on multiple categories simultaneously without degraded

results (Section 3.6.3).

3.6.1 Comparison of the ONet 4D and OFlow Representations

The qualitative and quantitative results clearly demonstrate that OFlow performs better than ONet 4D on unseen data while

both methods exhibit similar representation capabilities (see Section 4.1 of the main publication). While ONet 4D predicts

occupancy probabilities in space for all time steps individually, OFlow propagates the predicted 3D shape from time 0 forward



(a) (b)

Figure 6: 4D Reconstruction from Image Sequences (Warping Cars). This figure shows two examples from the test set of

the 4D reconstruction from image sequence experiment on the warping cars dataset. For both examples, we show the input

as well the output of OFlow, ONet 4D, and PSGN 4D for 9 equally spaced time steps between 0 and 1.

by using the parameterized vector field, hence exploiting the physical properties of objects in motion. This way, the tasks of

shape and motion reconstruction are decoupled resulting in a more intuitive and simpler problem as the motion vectors, in

contrast to occupancy values, often only change slightly over time. Importantly, while the proposed OFlow model is able to

exploit the smoothness properties of the motion field, the naı̈ve ONet 4D approach does not, hence leading to higher sampling

complexity and degraded results. In Fig. 14 we show an example highlighting the differences of the two approaches: While

ONet 4D often produces overly-smooth results, OFlow is able to better preserve the 3D shape over time.



(a) (b)

Figure 7: 4D Reconstruction from Image Sequences (D-FAUST). This figure shows two examples from the test set of the

4D reconstruction experiment on the D-FAUST dataset. For both examples, we show the input as well the output of OFlow,

ONet 4D, and PSGN 4D for 9 equally spaced time steps between 0 and 1.



Figure 9: Interpolation Results. The figure shows two examples from the test set of the interpolation experiment on the

D-FAUST dataset. It shows linear interpolation (left) and the output of OFlow (right) conditioned on the start and end point

clouds. For both examples, the qualitative differences are most profound in the arm and hand region. In contrast to linear

interpolation, OFlow is able to better preserve the lengths and shapes of the arms and hands over the whole sequence.



Figure 10: Failure Case for 4D Reconstruction from Image Sequences. We show five equally spaced times steps for the

input and the output of OFlow for an example from the 4D reconstruction from image sequences experiment on the D-FAUST

dataset. While obtaining appropriate 3D geometry, the extreme lighting conditions and the occluded left arm result in a nearly

static output.

Figure 11: t-SNE Visualization. The figure shows a 2D t-SNE embedding of the motion codes of training examples of

the D-FAUST dataset. The small line structures are formed by similar sub-sequences which are a result of our sub-sampling

process of the D-FAUST dataset. The clustering shows that OFlow is able to learn a meaningful representation of the motions.

The overlapping of different clusters often makes sense, e.g. “one leg jump” and “one leg loose” or “light hopping stiff” and

“light hopping loose.”



(a) Shape Interpolation with Fixed Motion. (b) Motion Interpolation with Fixed Shape.

Figure 12: Latent Space Interpolations. In Fig. 12a we show three equally spaced steps of a latent shape interpolation with

fixed motion. Similarly, in Fig. 12b we show three equally spaced steps of a latent motion interpolation with fixed shape. The

figures show that OFlow is able to learn a meaningful latent representation of both the shape and the motion.

3.6.2 Connectivity-Preserving Property of the OFlow Representation

Figure 15: Reconstruction of Touching Hands.

Note that the objects keep their form/topology and

do not merge during touching.

We model the velocity field as an invertible mapping which preserves

connectivity information. To investigate this property, we trained a

model to represent a short sequence of touching hands extracted from

the MANO dataset [13]. Indeed, the touching hands in Fig. 15 keep

their form and do not merge. While OFlow is not able to represent

merging of two objects due to its bijectivity, the spatial proximity of

the objects in the reconstruction is small enough to realistically model

the motion. Depending on the application, this property can also be

an advantage, e.g. not leading to self-intersections.

3.6.3 Training on Multiple Object and Motion Categories

IoU Chamfer Correspond

mul. cat. sin. cat. mul. cat. sin. cat. mul. cat. sin. cat.

D-FAUST 79.9 % 79.9 % 0.073 0.073 0.122 0.122

War. Cars 68.3 % 70.7 % 0.196 0.169 0.319 0.283

Table 8: 4D Point Cloud Completion on Multi-

ple Categories. The columns show if the model

was trained on a single (sin. cat.) or multiple cat-

egories (mul. cat.), and the rows show on which

dataset the model is evaluated.

Table 8 shows quantitative results of the 4D point cloud completion

experiment for OFlow trained and tested on D-FAUST and Warping

Cars simultaneously. We observe no or only slight changes wrt. the

single category models. This shows that OFlow can be trained with

different classes of objects and motions simultaneously without a sig-

nificant change in performance.



Figure 13: Motion Transfer. We show three examples of the motion transfer experiment. We take a start shape (first column)

and encode the motion from another sequence (second column) to transfer this motion to the shape (third column). We see

that OFlow is able to transfer the motion to another shape reasonably well despite changes in topology and pose.



Figure 14: Comparison of ONet 4D and OFlow. The figure shows three equally spaced time steps between 0 and 1 of the

output of ONet 4D (left) and OFlow (right) for an example from the test set of the point cloud completion experiment on the

D-FAUST dataset. While ONet 4D predicts occupancy probabilities in 4D space, OFlow propagates the predicted 3D shape

information from time 0 forward in time. As a result, OFlow better preserves the geometry over the whole sequence, here

shown in greater detail for the foot area.
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