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Supplementary material

The first part of the supplementary material contains dis-

cussions regarding the role of the camera translation in the

formulation of SFM/NR-SFM (appendix A.1), number of

degrees of freedom (appendix A.2) and a proof of lemma 1.

Additional information about the architecture of the pro-

posed deep networks is in appendix B. Appendix C provides

additional analysis of the robustness of C3DPO to the input

noise. Appendix D presents additional qualitative results

and appendix E discusses failure modes of our method.

A. Theoretical analysis

This section contains additional information regarding

various theoretical aspects of the NR-SFM task.

A.1. Centering

This section summarizes well known results on data cen-

tering in orthographic SFM and NR-SFM.

Lemma 2. Equations ynk = ΠRnXk + ΠTn hold true

for all n = 1, . . . , N and k = 1, . . . ,K if, and only if,

equations ȳnk = ΠRnX̄k hold true, where

ȳnk = ynk −
1

K

K
∑

k=1

ynk, X̄k = Xk −
1

K

K
∑

k=1

Xk.

Proof. Average and remove the LHS and RHS of each

equation from both sides.

Lemma 3. Equation ynk = Π(Rn

∑D

d=1
αndSdk + Tn)

holds true for all n = 1, . . . , N and k = 1, . . . ,K if, and

only if, equation ȳnk = ΠRn

(

∑D

d=1
αndS̄dk

)

holds true,

where

ȳnk = ynk −
1

K

K
∑

k=1

ynk, S̄dk = Sdk −
1

K

K
∑

k=1

Sdk.

Proof. Average and remove the LHS and RHS of each

equation from both sides.

A.2. Degrees of freedom and ambiguities

Seen as matrix factorization problems, SFM and NR-

SFM have intrinsic ambiguities; namely, no matter how

many points and views are observed, there is always a

space of equivalent solutions that satisfy all the observa-

tions. Next, we discuss what are these ambiguities and un-

der which conditions they are minimized.

A.2.1 Structure from motion

The SFM eq. (1) contains 2NK constraints and 6N + 3K
unknowns. However, there is an unsolvable ambiguity:

MX = (MA−1)(AX) means that, if (M,X) is a solu-

tion, so (MA−1, AX) is another, for any invertible ma-

trix A ∈ R
3×3. If X is full rank and there are at least

N ≥ 2 views, we can show that this is the only ambi-

guity, which has 9 degrees of freedom (DoF). Thus find-

ing a unique solution up to these residual 9 DoF requires

2NK ≥ 6N + 3K − 9. For example, with N = 2 views,

we require K ≥ 3 keypoints. Furthermore, the 3D point

configuration must not be degenerate, in the sense that X
must be full rank.

The ambiguity can be further reduced by considering the

fact that the view matrices M are not arbitrary; they are in-

stead the first two rows of rotation matrices. We can exploit

this fact by setting M1 = I2×3 (which also standardize the

rotation of the first camera), fixing 6 of the 9 DoF.

A.2.2 Non-rigid structure from motion

The NR-SFM equation contains 2NK constraints and 6N+
ND+3DK unknowns. The intrinsic ambiguity has at least

9 DoF as in the SFM case. Hence, for a unique solution (up

to the intrinsic ambiguity) we must have 2NK ≥ 6N +
ND+3DK−9. Compared to the SFM case, the number of

unknowns grows with the number N of views as (6+D)N
instead of just 6N , where D is the dimension of the shape

basis. Since the number of constraints grows as (2K)N , we

must have K ≥ 3 +D/2 keypoints.

Note that once the shape basis S is learned, it is pos-

sible to perform 3D reconstruction from a single view by

solving (3) for N = 1; in this case there are 2K equations

and 6 + D unknowns, which is once more solvable when

K ≥ 3 +D/2.

A.3. Proof of lemma 1

Lemma 4. The set X0 ⊂ R
3×K has the transversal prop-

erty if, and only if, there exists a canonicalization function

Ψ : R3×K → R
3×K such that, for all rotations R ∈ SO(3)

and structures X ∈ X0, X = Ψ(RX).

Proof. Assume first that X0 has the transversal property.

Then the function Ψ is obtained by sending each RX for

each X ∈ X0 back to X . This definition is well posed: if

RX = R̄X̄ where both X, X̄ ∈ X0, then X̄ = (R̄)−1RX
and, due to the transversal property, X = X̄ .



Figure 7: Qualitative results on S-Up3D showing input 2D keypoint annotations (top row) and monocular 3D reconstruc-

tions of all 6890 vertices of the SMPL model as predicted by C3DPO from two different viewpoints (bottom row).
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Figure 8: The architecture of Ψ and Φ. Both networks

share the same trunk (6x fully connected residual layers)

and differ in the type of their inputs and outputs.

Assume now that the function Ψ is given and let X,X ′ ∈

X0 such that X ′ = RX and so Φ(X ′) = Φ(RX). However,

by definition, Φ(RX) = X and Φ(X ′) = Φ(IX ′) = X ′,

so that X = X ′.

B. Architecture of Ψ and Φ

Figure 8 contains a schema of the architecture of Ψ and

Φ (both share the same core architecture). It consists of

5 fully connected residual blocks with a kernel size of 1.

Empirically, we have observed that using residual blocks,

instead of the simpler variant with fully connected layers

directly followed by batch normalization and no skip con-

nections, prevents the network from predicting flattened

shapes.

C. Analysis of robustness

In order to test the robustness of C3DPO to the noise

present in the input 2D keypoints, we devised the following

experiment.

We generated several noisy versions of the Synthetic

Up3D dataset by adding 2D Gaussian noise (with variance

σ) to the 2D input and randomly occluded each 2D input

point with probability pOCC . Experiments were ran for dif-

ferent number of input of keypoints (79, 100, 500, 1000)

and the evaluation was always conducted on the representa-

tive 79 vertices (section 4.1) of S-Up3D-test.

The results of the experiment are depicted in fig. 10. We

have observed improved robustness to noise with higher

numbers of used keypoints. At the same time, the perfor-

mance without noise (σ = 0, pOCC = 0) is slightly worse

for the setup higher number of keypoints (≥ 500 keypoints).

We hypothesize that, when more keypoints are used, the

performance deteriorates because the optimizer focuses less

on minimizing the reprojection losses of the 79 keypoints

that are used for the evaluation.

D. Additional qualitative results

In this section we present additional qualitative re-

sults. Figure 7 contains monocular reconstructions of

C3DPO trained on the full set of 6890 SMPL vertices of the

S-Up3D dataset. Note that we were unable to run [11, 32]

on this dataset due to scalability issues of the two algo-

rithms.

E. C3DPO failure modes

The main sources of failures of our method are: (1)

Failures of the 2D keypoint detector [19]; (2) Reconstruct-

ing “outlier” test 2D poses not seen in training (mainly on

Human3.6m); (3) Reconstructing strongly ambiguous 2D

poses (in a frontal image of a sitting human, the knee an-

gle cannot be recovered uniquely). The failure mode (1) is

depicted in fig. 9.



Figure 9: A qualitative example of 2D keypoints lifted by our

method. Here, the reconstruction fails due to a failure of the

HRNet keypoint detector.

79 keypoints 100 keypoints

500 keypoints 1000 keypoints

Figure 10: MPJPE on Up3D of C3DPO depending on various

levels of Gaussian noise added to 2D inputs (σ-vertical axis)

and the probability of occluding an input 2D point (pOCC-

horizontal axis) for different numbers of training keypoints

(left to right, top to bottom: 79, 100, 500, 1000).


