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6. Additional experiments
We set the same parameters for all experiments, except

where mentioned otherwise, as follows: N = 1000, µ =

0.75, γ = e−2

N2

∑
i,j d̃ij , α = 50, ρthresh =

⌈
2
N

∑
i ρi
⌉
, r as

the octree resolution, l = 3, τ = 0.025 and β = 0.275.

6.1. Influence of number of points

The input point cloud tends to be better represented by
larger number of points, but the associated computational
cost increases, as seen in Fig. 5. In practise, we must reach
a compromise and based on Fig. 7 we can consider a lower
number of points without significant performance degrada-
tion, depending on the application. For instance, in the
video provided, the online and real-time estimation were
performed with around 1000 and 650 points, respectively.
Based on Fig. 4, the number of segments estimated is not
significantly influenced by the number of points. For the
tested sequences, this means that the respective point clouds
are well represented by this amount of points.

6.2. Influence of µ

The µ ∈ [0, 1) parameter controls the contribution of
the graph structure for estimating future labels, according
to Eq. (10). If µ → 1, the graph structure is the dom-
inant factor, whereas if µ → 0, future labels are more
influenced by previous labels. We want to find a suit-
able value for µ that accounts for new information, while
also considering information from previous labels. Fig. 8
shows the average results obtained, in terms of precision,
recall and f-measure. We observe that higher µ values yield
slightly better average results. This corroborates the fact
that the AVPED can maintain current and past information
of the scene. Moreover, the results of lower µ values de-
pend significantly on the initial point cloud distribution and
associated point tracking errors, which is not desirable for
online and real-time applications. Based on the results from
Fig. 8, we selected µ = 0.75 as a balanced compromise be-
tween the contribution of the graph structure and previous
labelled points.

6.3. Influence of considering l leading eigenvalues

Fig. 9 shows the influence of the number of leading
eigenvalues considered to build the similarity matrix, ac-
cording to Eq. (8). We observe that, aside from pipe 3/4
and iCub sequences, the performance is not significantly
improved considering more than 3 eigenvalues. For higher
number of eigenvalues considered, the average performance
is only improved for the pipe 3/4 sequence and it decreases
for the iCub sequence.

6.4. Influence of incorporating the spectrum trans-
formation

Due to measurement errors or faulty point tracking, noise
is introduced into the AVPED. Since the AVPED is a
proper distance matrix, we cast the problem of dealing with
noise into embedding the AVPED in a feature space and
use the resultant representation to build the similarities (as
described in Section 3.3), while also incorporating the spec-
trum transformation into the original distance matrix D̃ (as
described in Section 3.7). Fig. 10 illustrates the benefits of
this spectrum transformation process, for which there are
statistically significant gains across most sequences. Also,
the results are most significant when the sequences are
longer and/or exhibit more noise and lost points, e.g. iCub
and iCubArm sequences. Since these sequences reflect real-
world scenarios more accurately, we advocate for the incor-
poration of spectrum transformation into AVPED.

6.5. Consistency analysis in sequential estimation

The proposed method provides sequential consistency in
two ways: by construction from Eq. (2), and by cluster-
ing via label spreading. An analysis of the number of seg-
ments estimated throughout the iCub and lamp sequences
compared to clustering via spectral clustering is provided
in Fig. 11. It can be seen that the label spreading provides
additional consistency to the overall method’s performance.
In particular, the method’s consistency is empirically robust
to neighbouring values of µ = 0.75.
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Figure 7: Average (a) precision, (b) recall and (c) f-measure as a function of number of points considered.
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Figure 8: Average (a) precision, (b) recall and (c) f-measure as a function of µ parameter.
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Figure 9: Average (a) precision, (b) recall and (c) f-measure as a function of considering l leading eigenvalues, according to Eq. (8).
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Figure 10: Average (a) precision, (b) recall and (c) f-measure as a function of incorporating the spectrum transformation. * and **
represent statistical significance with p-value<0.05 and p-value<0.005, respectively.
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(b) lamp
Figure 11: Number of segments estimated using label spreading (ls) and adaptive spectral clustering (asc) over (a) iCub and (b) lamp
sequences. We see that the number of segments estimated by applying spectral clustering at each frame is not very consistent.


