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In this document, we provide the following details:

• Section 1: provides another synthetic experiment to
further demonstrate the effectiveness of our system.

• Section 2: efficient computation of the next best pose
(cf. section 2.2 of the main paper) including the incor-
poration of autocorrelation matrices in this computa-
tion (section 3 of the main paper).

• Section 3: full details on the computation of partial
derivatives in J (cf. sections 2.1 and 2.2 of the main
paper) and a full example of this: pinhole model with
radial distortion.

• Section 4: describes a way of visualizing the uncer-
tainty of calibration results through pixel-wise uncer-
tainty maps, displaying expected reprojection errors
induced by errors on intrinsic parameters.

1. Another Synthetic Experiment
When users try to calibrate a camera, they tend to ran-

domly move the camera around and get as many images
as possible for calibration. With our calibration wizard,
we have already shown the superiority over such randomly-
captured case in the main paper. Now, considering that cal-
ibration is an interactive procedure, i.e., a user can move
the camera around, we could actually keep all the interme-
diate frames when moving from one position to the next,
and then all these frames can be used for calibration. Here
we perform another synthetic test to validate that the cali-
bration can still be improved by moving to optimal poses
under this scenario. Provided the frame rate is 25 fps and it
takes 1 second to move from one pose to the next, 25 im-
ages can then be acquired within one path. To this end, the
experimental process is as follows.

First, we create 4 random poses using exactly the same
way described in the main paper, from which we could
acquire 3 paths by pose interpolation. Thus, there are
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3 × 25 = 75 frames in total for the case “Random”. This
process mimics moving the camera from one pose to an-
other continuously for three times.

Then, we randomly take 5 images within the first path to
get the initial calibration for our wizard. The wizard then
proposes a next best pose and while the simulated camera
moves there, 25 additional images for calibration are ac-
quired. This is done 3 times, for 75 additional calibration
images in total. This input leads to the results labeled as
“Wizard” in the following. The same process is also ap-
plied for taking autocorrelation matrix into account in next
best pose computation (“Wizard-Auto”)

Finally, we simply compare the calibration results ac-
quired from random-generated paths and wizard-generated
ones. As illustrated in Fig. 1, we can clearly notice that the
calibration results from our system have higher precision
and accuracy than the results from random paths.

We also perform the comparison with respect to the
level of noise added to 2D corner points. In this experi-
ment, zero-mean Gaussian noise with standard deviation of
0.1, 0.2, 0.5, 1 respectively 2 pixels has been added to cor-
ner points, and the comparisons are shown in Fig. 2. Again,
even when unrealistically strong noise is added (σ = 2), our
system provides much better estimation of the focal length.
Moreover, when considering the autocorrelation matrices,
our system seems more robust to the noise.

Note that we only select the results for some intrinsic pa-
rameters for these two experiments, but similar results can
be expected for other parameters like principal points.

2. An efficient way of computing the covari-
ance matrix of intrinsic parameters

As already explained in the paper, the Jacobian matrix J
can be denoted as:

J =


A1 B1 0 · · · 0
A2 0 B2 · · · 0
...

...
...

. . .
...

Am 0 0 · · · Bm

 (1)
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Figure 1. Comparisons of the intrinsic parameters estimated from
three schemes on synthetic data: the paths generated from ran-
dom poses, generated from the poses proposed by calibration wiz-
ard without and with autocorrelation matrix. f = 800, (u, v) =
(320, 240), k1 = 0.5, k2 = 1. Red dashed lines represent the
ground truth values. Wizard images achieve superior performance
over random images on all intrinsic parameters.
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Figure 2. Comparisons of the calibration schemes concerning the
robustness to added noise. Zero-mean Gaussian noise with stan-
dard deviation of 0.1, 0.2, 0.5, 1 respectively 2 pixels is added to
the 2D target points. The intrinsic parameters estimated from the
wizard-generated paths (shown are results for the focal length),
are more accurate (left) and precise (right) than random-generated
paths, especially when the noise level is high. The total number of
image is 75.

Let us examine in detail the incorporation of the autocor-
relation matrices of image corner points in the computation
of the information matrix, as shown in Eq. (9) in the paper:

H = J>diag(C11, C12, · · · , C1n, C21, · · · , Cmn)J (2)

Let us decompose the matrices Ai and Bi appearing in
the definition of the J , into matricesAij andBij containing

the residual associated with a single image point each (point
j in image i):

Aij =

(
∂x̂ij

Θ1
· · · ∂x̂ij

Θk
∂ŷij

Θ1
· · · ∂ŷij

Θk

)
Bij =

(
∂x̂ij

Πi,1
· · · ∂x̂ij

Πi,6
∂ŷij

Πi,1
· · · ∂ŷij

Πi,6

)

The Aij are of size 2 × k (k is the number of intrinsic
parameters) and the Bij of size 2× 6. We then have:

Ai =

Ai1

...
Ain

 Bi =

Bi1

...
Bin


Now, the information matrix H of Eq. (2) can be struc-

tured as:

H =

(
U W
W> V

)
(3)

where

U =
∑
i

Ui (4)

with Ui =
∑
j

A>ijCijAij (5)

W =
(
W1 · · · Wm

)
(6)

with Wi =
∑
j

A>ijCijBij (7)

V =


V1

V2

. . .
Vm

 (8)

with Vi =
∑
j

B>ijCijBij (9)

U is a symmetric matrix of size k × k, W is of size k ×
(6m) (remember that m is the number of images) and V is
a block-diagonal matrix consisting of m symmetric 6 × 6
matrices Vi.

As described in [1], the upper-left sub-matrix of H−1 is
given by

Σ = (U −WV −1W>)+ (10)

which is a pseudo-inverse of a k× k symmetric matrix. Let
us expand this using the above definitions of U, V and W .

Using the above definitions of U, V and W , we can
rewrite Σ as:

Σ =

{∑
i

(
Ui −WiV

−1
i W>i

)}+

(11)

The computation is efficient. The Vi are symmetric and
of size 6×6, hence their inversion is a small problem. Other
than that, the computation only involves products and sums



of small matrices and one final inversion of a k × k sym-
metric matrix.

Let us now consider the computation of the next best
pose. As explained in the paper, we use global optimization
algorithms for this purpose. They will need to compute Σ
and its trace multiple times, for multiple hypothetical next
poses. It is thus interesting to study how to cut computa-
tion times by performing adequate pre-computations. This
is very simple in our case. Let image m + 1 be the next
image, for which to compute the optimal pose. Images 1 till
m are thus already acquired and we have computed intrinsic
and pose parameters for them. All we need to do is to com-
pute once the following part of equation (11), for images 1
to m:

A =

m∑
i=1

(
Ui −WiV

−1
i W>i

)
(12)

Then, for each hypothetical pose for image m + 1, we
only need to compute

Σ =
{
A+ Um+1 −Wm+1V

−1
m+1W

>
m+1

}+
(13)

This computation is efficient: besides the computation of
partial derivatives of the projection function for the hy-
pothetical new pose (see section 3 for details) and the
sum or multiplication of small matrices (of size at most
(max(k, 6) ×max(k, 6)), it only involves the inversion of
a symmetric matrix of size 6× 6 and of a symmetric matrix
of size k × k.

Note that in this section we handled the incorporation
of autocorrelation matrices. If one wishes to work without
them, it suffices to replace the Cij by identity matrices.

3. Details on the computation of partial deriva-
tives in J

In the following, we use the following shorthand nota-
tions for partial derivatives, which makes for easier read-
ing. If A is a vector of size a and B a vector of size b (with
possibly, a = 1 or b = 1), then we write:

∂A

∂B
=


∂A1

∂B1
· · · ∂A1

∂Bb

...
. . .

...
∂Aa

∂B1
· · · ∂Aa

∂Bb

 (14)

Also, if A is a matrix and B a scalar, then ∂A
∂B is the

matrix gathering the partial derivatives of the coefficients of
A relative to the scalar B, in the same order as they appear
in A.

As we have seen in the paper, 3D to 2D projections can
be written as:

px(Θ,Π, Q) = qx(Θ, RQ+ t) = qx(Θ, S) (15)
py(Θ,Π, Q) = qy(Θ, RQ+ t) = qy(Θ, S) (16)

Thanks to the chain rule, the derivatives of residuals x̂
(for their definition, see section 2 of the main paper) with
respect to extrinsic parameters can be decomposed as:

∂x̂

∂R
=

∂px
∂R

=
∂qx
∂S

∂S

∂R
(17)

∂x̂

∂t
=

∂px
∂t

=
∂qx
∂S

∂S

∂t
(18)

and likewise for partial derivatives of ŷ. Here, we use the
informal notation

∂R = ∂

αβ
γ

 (19)

where the three angles α, β, γ parameterize the rotation ma-
trix R as shown on page 2 of the main paper and as repro-
duced here:

R = Rz(γ)Ry(β)Rx(α) (20)

∂qx/∂S and ∂qy/∂S depend on the projection functions
for the camera model used for calibration (see below for
an example, the pinhole model with one radial distortion
coefficient), while ∂S/∂R and ∂S/∂t are generic for all
camera models. Remember that

S = RQ+ t (21)

Thus:

∂S

∂R
=


∂S1
∂α

∂S1
∂β

∂S1
∂γ

∂S2
∂α

∂S2
∂β

∂S2
∂γ

∂S3
∂α

∂S3
∂β

∂S3
∂γ

 = R

 Q1 Q3 −Q2

−Q3 Q2 Q1

Q2 −Q1 Q3

 (22)

∂S

∂t
=


∂S1
∂t1

∂S1
∂t2

∂S1
∂t3

∂S2
∂t1

∂S2
∂t2

∂S2
∂t3

∂S3
∂t1

∂S3
∂t2

∂S3
∂t3

 = I3×3 (23)

The derivation is straightforward.

3.1. Example: pinhole model with one radial dis-
tortion coefficient

Here we use the pinhole model with one radial distortion
coefficient as an example. It can be easily generalized to
other more complicated models. The model can be repre-
sented as:

qx(S) = u+ (1 + k1r
2)f

S1

S3
(24)

qy(S) = v + (1 + k1r
2)f

S2

S3
(25)

where r =
√

(S1

S3
)2 + (S2

S3
)2 = 1

S3

√
S2

1 + S2
2 . We define

Θ = (f, u, v, k1).



First, the partial derivatives of the local projection func-
tions with respect to S can be written as:(∂qx

∂S
∂qy
∂S

)
=

(
∂qx
∂S1

∂qx
∂S2

∂qx
∂S3

∂qy
∂S1

∂qy
∂S2

∂qy
∂S3

)
(26)

where

∂qx
∂S1

=
f

S3
+
fk1

S3
3

(3S2
1 + S2

2)

∂qx
∂S2

=
2fk1S1S2

S3
3

∂qx
∂S2

= −fS1

S2
3

− 3fk1S1(S2
1 + S2

2)

S4
3

∂qy
∂S1

=
2fk1S1S2

S3
3

∂qy
∂S2

=
f

S3
+
fk1

S3
3

(S2
1 + 3S2

2)

∂qy
∂S2

= −fS2

S2
3

− 3fk1S2(S2
1 + S2

2)

S4
3

This, together with Eq. (22) and (23), allows to compute the
partial derivatives of residuals relative to extrinsic parame-
ters in the Jacobian matrix J , by inserting into Eq. (17) and
(18) (and likewise for partial derivatives of ŷ).

As for the partial derivatives relative to intrinsic parame-
ters, they can be computed as:

∂x̂

∂Θ
=
∂qx
∂Θ

=
(

(1 + k1r
2)S1

S3
1 0 r2f S1

S3

)
(27)

∂ŷ

∂Θ
=
∂qy
∂Θ

=
(

(1 + k1r
2)S2

S3
0 1 r2f S2

S3

)
(28)

Now, we have everything needed for building J .

4. Uncertainty map

Here we introduce the concept of uncertainty map which
could be an effective tool to visualize the quality of the cur-
rent calibration. Also, the uncertainty map can be used to
evaluate the evolution of the quality along the calibration
process when adding more and more images.

Given the k × k covariance matrix Σ of intrinsic param-
eters, an uncertainty map is defined as the expected un-
certainties of the local projection model across the image
plane. That is to say, we propagate the uncertainties of in-
trinsic parameters to each pixel on the image area. The qual-
ity of calibration at any stage of the calibration process can
be visualized as shown in Fig. 3.

Mathematically speaking, for each pixel (x, y) on the
image, the uncertainty propagation process can be formu-

lated as:

Γ(x, y) =∂qx(Θ,S)
∂Θ |S=S(x,y,Θ)

∂qy(Θ,S)
∂Θ |S=S(x,y,Θ)

Σ

∂qx(Θ,S)
∂Θ |S=S(x,y,Θ)

∂qy(Θ,S)
∂Θ |S=S(x,y,Θ)

>
(29)

where Γ is a 2 × 2 covariance matrix expressing the un-
certainty per image point (x, y). To compute this, we first
need to back-project the image point to a 3D point S (any
3D point along the line of sight associated with the image
point will do). We denote this as S(x, y,Θ) in the above
equation: the back-projection depends on the image point
coordinates x and y and of course on the intrinsic parame-
ters Θ. Then, we propagate the uncertainty on the intrinsic
parameters (covariance matrix Σ) in a standard way through
the forward projection, as shown in the above equation, to
obtain the covariance matrix Γ.

Note that, we are aware that minimizing over this pixel
reprojection uncertainty is better than over the trace of the
covariance matrix Σ. The main problem with minimizing
reprojection uncertainty is computation time, incompatible
with real-time. In this paper we stuck to the trace, a com-
monly used simple cost function. In the future, we will con-
sider the reprojection uncertainty for a subset of pixels.

In the following, we provide an example for the process
of acquiring the uncertainty map and some analysis.

4.1. Example: 3-parameter pinhole model

For this simple camera model, the uncertainty map can
be analyzed theoretically, as shown in the following. We
remind the definition of the 3-parameter pinhole model,
where the vector of intrinsic parameters is Θ = (f, u, v)>.

qx(Θ, S) = u+ f
S1

S3

qy(Θ, S) = v + f
S2

S3

These are the “forward” projection equations. As ex-
plained above, to construct the uncertainty map, we should
back-project each pixel to 3D, i.e. to some 3D point S
which, if forward-projected, gives rise to the original pixel.
One possibility for the back-projection is as follows:

S(x, y,Θ) =

x− uy − v
f


We now compute the partial derivatives appearing in



(a) (b) (c)
Figure 3. Illustrations for the uncertainty maps and the effectiveness of our camera wizard. The size of the map is the same as acquired
image size 640 × 480. (a) Initial calibration results with 3 freely taken images. On top of the 3 freely-taken images, (b) add two freely
taken images. (c) add two images proposed by wizard. We can clearly visualize: (1) the more calibration images, the lower the uncertainty
(2) the uncertainty obtained from using wizard images is much lower than with freely taken ones (cf. the scale on the right hand side).

Eq. (29):(
∂qx(Θ,S)

∂Θ |S=S(x,y,Θ)
∂qy(Θ,S)

∂Θ |S=S(x,y,Θ)

)
=

(
S1

S3
1 0

S2

S3
0 1

)
|S=S(x,y,Θ)

=

(
x−u
f 1 0

y−v
f 0 1

)

Inserting this in Eq. (29), we get the desired covariance
matrices per image point:

Γ(x, y) =

(
x−u
f 1 0

y−v
f 0 1

)
Σ

x−u
f

y−v
f

1 0
0 1


To analyze the nature of the uncertainty map, we can

imagine it as the coefficients of an “uncertainty ellipse” cen-
tered at every image pixel. Once we acquire Γ for each
pixel, the trace, larger eigenvalue or determinant of Γ can
be used to measure the impact of the uncertainty of intrinsic
parameters, on this pixel. In Fig. 3, we generate the map by
creating an image where the value of every pixel is given by
the trace of Γ.

We may further analyze the nature of these uncertainty
maps as follows. When computing the trace of Γ in detail,
we get:

tr(Γ(x, y)) = Σ22+Σ33 +
Σ11

f2

[
(x− u)2 + (y − v)2

]
+

2

f
[Σ12(x− u) + Σ13(y − v)]

This is quadratic with respect to x and y. The uncertainty
map, if visualized in 3D (as height map above the x − y-
plane), can be shown to be a circular paraboloid. The global
minimum of the trace is attained at

x∗ = u− f Σ12

Σ11
y∗ = v − f Σ13

Σ11

and has the following value:

Σ22 + Σ33 −
Σ2

12 + Σ2
13

Σ11

A few observations are as follows. If the covariance be-
tween the focal length and the principal point coordinates
(Σ12 and Σ13) approaches zero, then the minimum of the
uncertainty map coincides with the principal point and its
value there is the sum of the variances of the principal point
coordinates. And if the variance of the focal length tends
to zero, the uncertainty map tends to being uniform. There-
fore, when the calibration result gets more accurate (low
uncertainty), the range of the uncertainty map will become
smaller, and its minimum will be approaching the principal
point. Finally, an empirical observation is that the covari-
ance matrices Γ, when visualized as uncertainty ellipses,
tend to be oriented towards the minimum of the uncertainty
map (i.e. at each image point, the associated uncertainty el-
lipse has an axis that “points” towards the minimum of the
uncertainty map).

More analysis, also for more complex camera models, is
possible.

In summary, we believe that this concept is a principled
way of displaying and interpreting the uncertainty of a cali-
bration estimate.
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