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This document provides the proof of the Propositions,
along with some qualitative results obtained using the pro-
posed framework. In the following, we first provide an al-
ternative proof to propositions 3.2 and 3.3. Later, we pro-
vide the qualitative results of non-rigid reconstruction, cam-
era autocalibration, and rigid 3D motion estimation, non-
rigid reconstruction.

Proof of Proposition 3.2/3.3: Let us define ¢; = 07, v =

X700, 0] Ao = [ ] A = [ ] and

A= [‘Gi E] with ej; = 1 and (ej;);%u = O.
For g;(v) = z1(v)"A;z1(v), the POP of polynomials
{g0(v), g7 (v),g; (v),i = 0,...m} can be relaxed, similar

to (2), as

min {tr(AO'T‘)| w(AFT), te(A; 1) > 0,i=1,... ,m}, (1)

where tr(AgT) := go(v) = X; €;. We choose T = [Y Im,xm]

such that go(v) = 3, 62 = 3, ¢; is satisfied. For polynomi-
als gF (v) = 21(v)"Afz1(v) = tr(G;Y) - 67 and g; (v) =
21(V)TA; 21 (v) = 67 = tr(G;Y), (1) becomes,

r{/llz%{Z(S?' =07 <tr(G;Y) 2 67,4 = 17~--’m}' 2)

After considering €; = 51-2, (2) becomes an SDP of (6/7). |}
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Figure 1: Nine views reconstructions of tshirt dataset using Lassare’s relaxation.



Figure 2: Rendered views for the 3D reconstruction of the Fountain sequence using the intrinsics obtained from our method.
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Figure 3: Qualitative results of the non-minimal registration (our method) on the publicly dataset [1]. Each row shows two
views of the same registration obtainde by non-minimal solver. Illustration shows the model in green and the data in red.
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Figure 4: Qualitative results of the non-minimal registration (our method) on the publicly dataset [1]. Each row shows two
views of the same registration obtainde by non-minimal solver. Illustration shows the model in green and the data in red.
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Figure 5: Qualitative results of the non-minimal registration (our method) on the publicly dataset [1]. Each row shows two
views of the same registration obtainde by non-minimal solver. Illustration shows the model in green and the data in red.



