Supplementary Material: Task-Driven Modular Networks for Zero-Shot Compositional Learning

Senthil Purushwalkam1,* Maximilian Nickel2 Abhinav Gupta1,2 Marc’Aurelio Ranzato2
1Carnegie Mellon University 2Facebook AI Research

1. Hyperparameter tuning

The results we reported in the main paper were obtained using the best hyper-parameters found on the validation set. We used the same cross-validation procedure for all methods, including ours. Here, we present the ranges of hyper-parameters used in the grid-search and the selected values.

1.1. Task Driven Modular Networks

Hyper-parameter values:
- Feature extractor learning rates: 0.1, 0.01, 0.001, 0.0001 (chosen: 0.001)
- Gating network learning rates: 0.1, 0.01, 0.001, 0.0001 (chosen: 0.01)
- Number of sampled sampled negatives for Eq 3: for MIT States 200, 400, 600 (chosen: 600), for UT-Zappos we choose all negatives
- Batch size: 64, 128, 256, 512 (chosen: 256)
- Fraction of train concepts dropped in ConceptDrop: 0%, 5%, 10%, 20% (chosen: 5%)
- Number of modules per layer: 12, 18, 24, 30 (chosen: 24)
- Output dimensions of each module: 8, 16 (chosen: 16)
- Number of layers: 1, 2, 3, 5 (chosen: 3 for MIT States, 2 for UT-Zappos)

1.2. LabelEmbed+

Hyper-parameter values:
- Learning rates: 0.1, 0.01, 0.001, 0.0001 (chosen: 0.0001 for MIT States, 0.001 for UT-Zappos)
- Batch size: 64, 128, 256, 512 (chosen: 512)
- Fraction of train concepts dropped in ConceptDrop: 0%, 5%, 10%, 20% (chosen: 5%)

1.3. RedWine

Hyper-parameter values:
- Learning rates: 0.1, 0.01, 0.001, 0.0001 (chosen: 0.01)
- Batch size: 64, 128, 256, 512 (chosen: 256 for MIT States, 512 for UT-Zappos)
- Fraction of train concepts dropped in ConceptDrop: 0%, 5%, 10%, 20% (chosen: 0%)

1.4. Attributes as Operators

Hyper-parameter values:
- Fraction of train concepts dropped in ConceptDrop: 0%, 5%, 10%, 20% (chosen: 5%)

Learning rate, batch size, regularization weights chosen from the original paper and executed using the implementation at: https://github.com/Tushar-N/attributes-as-operators.

*Work done as an intern at Facebook AI Research. Proposed dataset splits and code available here: http://www.cs.cmu.edu/~spurushw/projects/compositional.html
2. Additional Topology Visualizations

Figure 1. Additional Examples of task driven topologies learned in TMN (similar to Figure 5 of the main text).