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Al. Theoretical analysis of the CCE-based
scheme

The following conducts theoretical analysis for the pro-
posed CCE- (i.e., cross-domain camera equiprobability)
based scheme.

Proposition. Let S and T denote source and target do-
mains. x° and x' are the images from the two domains;
ps(x) and py(x) are their probability density functions; and
Cs and Cy are the number of camera classes in these two
domains. Let p(x|C{) and p(x|C!) be the class-conditional
density functions of the ith camera class in source and tar-
get domains, respectively. It can be proved that ideally, min-
imizing the CCE loss will lead to

p(z®|CY) ps(z®), Ve*eS;i=1---,C: (8)
p(zf|CH) = pi(ah), Va'leT;i=1,---,Cs.
ps(x) = pi(x), Ve eSUT.

Proof. All the following analysis is conducted in the
context of the learned feature representation (or equally,
the learned shared subspace). Given an image z° from
source domain, its posteriori probability with respect to
the ith camera class in target domain (denoted by C!(i =
1,--+,C%)) can be expressed via the Bayes’ rule as

z*|CH)P(C))
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where p(2*|C}) is the class-conditional probability density
function of the ith camera class in target domain, ps(z*)
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denotes the probability density function of the images in
source domain, and P(C!) is the priori probability of the ith
camera class in target domain. Referring to Eq.(3) in our
paper, P(C!|z*) is just D(B(x), j) in the CCE loss.

Let us investigate the CCE loss in Eq.(3) of our paper
to gain understanding on the optimal value of D(B(x), j)
when this loss is minimized. Since the CCE loss is defined
for each individual image x independently, it will be suf-
ficient to investigate the minimization of the loss for any
given image x. Without loss of generality, it is assumed that
x is from source domain. For clarity, D(B(x), j) is com-
pactly denoted by D;. With respectto D;(j = 1,---,C}),
the minimization of the CCE loss can be expressed as a con-
strained optimization

min 1 > log(D;) (10)

with the constraints of D; > 0 and Ef;l D; =1, con-
sidering that D; represents the posteriori probability. Due
to the symmetry of the objective function with respect to
the variables D1, - - - , D¢,, it is not difficult to see that the
optimal value of D; is 1/Cy for j = 1,--- ,Cy. A rigor-
ous proof can be readily obtained by applying the Karush-
Kuhn-Tucker conditions to this optimization, which is omit-
ted here. This indicates that P(C!|z*) will equal 1/C}; when
the CCE loss is minimized for this given image . Now we
assume the ideal case that this CCE loss is minimized for
any given image x in source domain'.

'Note that such an ideal case may not be really achieved in practice.
Nevertheless, it helps to clearly reveal the effect of minimizing the CCE
loss in the theoretical sense.



Let us turn to Eq.(9) and rearrange it as

PEED )

plalC) = P(C}) Vet €S i=1,-,C

1D
Without loss of generality, equal priori probability can be
set for the C; camera classes in target domain, that is, P(C})
is constant 1/Cy. Further, note that by optimizing D; in
Eq.(10) above, it can be known that
Ve e S;i=1,---,C;.

P(Cilz") = Ci (12)

t
Combining the above results, Eq.(11) becomes

= VO, (%) = pule”),

pa'lch) = T

(13)
Note that the right hand side of this equation does not de-
pend on the index i. This indicates that in the learned
shared subspace, the class-conditional density function for
each camera class in target domain becomes same for any
given ° € S. Applying the same argument to the images
in target domain can similarly obtain

p(zf|CF) = pe(2?), V2l eT;i=1,---,C,,

where p(z?|C$) and p;(z*) are defined in the similar way as
the above. This result indicates that in the learned shared
subspace, the class-conditional density function for each
camera class in source domain becomes same for any given
2t eT.

The above results indicate that for an image in source
domain, it will not feel the distribution discrepancy among
the camera classes in target domain. Furthermore, its class-
conditional density function value (e.g., p(z*|C})) for those
camera classes just equals its density function value in
source domain (e.g., ps(2*)). The similar remark can be
made for an image in target domain.

Upon the above results, the following further proves that
in the learned shared subspace, the data distributions of
source and target domains will become identical and this
removes the domain-level distribution discrepancy.

For any image z° from source domain, its value eval-
uated by the probability density function of target domain
can be obtained as

(14)

Cy Cy
pi(z®) = Zp(xs\Cf)P(Cf) = Zps(xs)P(Cf) = ps(2®),
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where the first equality is due to Eq.(13) and the second one
is because .51, P(C!) = 1. Similarly, the result for any
given image x! from target domain can be obtained as

Cs Cs
pa(a) = D p(a'[CHP(CY) = D mi(a")P(CY) = pula!),
1=1 =1 (16)

VefeS;i=1,---,C,.

where the first equality is due to Eq.(14) and the second one
is because 210:51 P(Cs) =1.

Collectively, the above two results indicate that for any
image x from either source or target domain, the following
result can be obtained.

ps(x) = pi(x), YxeSUT. a7

This means that the two distributions, p,(x) and p;(z), are
identical on the set S U 7. With respect to the definitions
of the two distributions, this indicates that upon the learned
feature representation, the data distributions of source and
target domains become identical on the set S U T and that
the distribution discrepancy is therefore removed. |

In addition, it is worth mentioning that the ideal mini-
mization of the CCE loss does not theoretically guarantee
that in the shared subspace, an image from either source
or target domain will not feel the distribution discrepancy
among the camera classes in its own domain. In other
words, the results that p(z*|C{) = --- = p(z°|C¢.) or
p(x'|Cf) = --- = p(a*|C¢,) cannot directly be derived
from the ideal minimization of the CCE loss.

Nevertheless, note that Eq.(17) implies that at any place
x in SUT, the probability density of images from source do-
main is the same as the probability density of images form
target domain. This means that the images from two do-
mains have been adequately mixed up. In this case, con-
sidering that the result p(2°|C}) = --- = p(x®|C¢,) is true
(as proved in Eq.(13)), we can reasonably expect that this
result shall be generalized from x* to z*, that is, p(z'|C}) =
-+ = p(z'|C¢,) becomes true. Applying the same argu-
ment can obtain the result p(z°|C{) = --- = p(z°|C¢).
Therefore, it can be reasonably expected that in practice in
the shared subspace, an image from either source or target
domain will not feel the distribution discrepancy among the
camera classes in its own domain. Experimental study has
been conducted to show that this tendency can indeed be
observed in practice, as shown by Table 6 in our paper and
the following Fig. Al.

A2. Visualization of data distributions

The data distributions are visualized at the domain-level
and camera-level via t-SNE [1] in Fig. Al. We extract
the features of each image by the baseline model (BL),
DAL, CAL-GRL and CAL-CCE, respectively, in the task
of “DukeMTMC-reID—Market1501”. The top row shows
the distributions of source and target domains (i.e., inter-
domain), where blue and red colors indicate source and
target domains, respectively. The bottom row illustrates
the distribution of each camera class in target domain (i.e.,
inter-camera on Market1501), where different colors denote
different camera classes.

First, from the inter-domain results shown in the top row
of Fig. A1, it can be seen that DAL, CAL-GRL and CAL-
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Figure Al. Visualization of data distributions at the domain-level and camera-level via t-SNE [1]. The features of each image are extracted
by the baseline (BL), DAL, CAL-GRL and CAL-CCE in the task of “DukeMTMC-reID—Market1501”, respectively. The top shows the
distributions of source and target domains (i.e., inter-domain), where blue and red colors indicate source and target domains, respectively.
The bottom illustrates the distribution of each camera class in target domain (i.e., inter-camera on Market1501), where different colors
denote different camera classes. Note that all figures correspond to the experimental results in Table 6 of our paper.

CCE can effectively “mix” the two domains when com-
pared with BL. This validates that they are all able to reduce
the data distribution discrepancy between source and target
domains.

Second, from the inter-camera result shown in the bot-
tom row in Fig. Al, it can be seen that both CAL-GRL
and CAL-CCE seem to better “mix” these camera classes
than BL and DAL which do not consider any camera-level
discrepancy. Furthermore, consistent with its lowest inter-
camera distance reported in Table 6 of our paper, CAL-CCE
displays an excellent “mixture” of different camera classes
as expected, further illustrating its best capability in reduc-
ing the camera-level discrepancy in target domain.
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Figure A2. Parameter sensitivity (by BL+UOT in “Duke—Market1501”).

A3. On the parameter sensitivity of UOT.

In this section, we conduct experiments to observe the
parameter sensitivity of UOT. The results are reported in
Fig. A2. Firstly, note that k,, is not directly preset but de-
cided by k and the specific data (Recall that k), is the number
of positive samples of an anchor within the top-k positions

and share its fragment). As in Fig. A2, when k is as small
as 1, no positive samples (i.e., k, is often zero) could be
found and thus performance is poor. When k goes up to 5,
the performance tends to plateau. Secondly, for &, if we
only select one negative sample (i.e., k, is set as 1), this
sample often undesirably shares the same identity as the an-
chor. Meanwhile, setting k,, too large could include many
easy negative samples, instead of hard negative ones pre-
ferred by UOT. In all experiments, we uniformly set k£ and
k, as 5 and 2.
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