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A. Appendix
This appendix provides additional details on the network

architectures and loss functions (Sec. A.1), more analysis
experiment results (Sec. A.2), per-category results on Scan-
Net (Sec. A.3), and finally more visualizations (Sec. A.4).

A.1. Details on Architectures and Loss Functions

VoteNet architecture details. As mentioned in the main
paper, the VoteNet architecture composes of a backbone
point feature learning network, a voting module and a pro-
posal module.

The backbone network, based on the PointNet++ archi-
tecture [4], has four set abstraction layers and two fea-
ture up-sampling layers. The detailed layer parameters are
shown in Table 1. Each set abstraction (SA) layer has a
receptive field specified by a ball-region radius r, a MLP
network for point feature transform MLP [c1, ..., ck] where
ci is output channel number of the i-th layer in the MLP.
The SA layer also subsamples the input point cloud with
farthest point sampling to n points. Each SA layer is speci-
fied by (n, r, [c1, ..., ck]) as shown in the Table 1. Compared
to [4], we also normalize the XYZ scale of points in each
local region by the region radius.

Each set feature propagation (FP) layer upsamples the
point features by interpolating the features on input points
to output points (each output point’s feature is weighted av-
erage of its three nearest input points’ features). It also com-
bines the skip-linked features through a MLP (interpolated
features and skip-linked features are concatenated before
fed into the MLP). Each FP layer is specified by [c1, ..., ck]
where ci is the output of the i-th layer in the MLP.

The voting module as mentioned in the main paper is
a MLP that transforms seeds’ features to votes including a
XYZ offset and a feature offset. The seed points are outputs
of the fp2 layer. The voting module MLP has output sizes
of 256, 256, 259 for its fully connected layers. The last fully
connected layer does not have ReLU or BatchNorm.

The proposal module as mentioned in the main paper is
a SA layer followed by another MLP after the max-pooling
in each local region. We follow [3] on how to parameter-

ize the oriented 3D bounding boxes. The layer’s output has
5+2NH+4NS+NC channels whereNH is the number
of heading bins (we predict a classification score for each
heading bin and a regression offset for each bin – relative
to the bin center and normalized by the bin size), NS is the
number of size templates (we predict a classification score
for each size template and 3 scale regression offsets for
height, width and length) and NC is the number of seman-
tic classes. In SUN RGB-D: NH = 12, NS = NC = 10,
in ScanNet: NH = 12, NS = NC = 18. In the first 5
channels, the first two are for objectness classification and
the rest three are for center regression (relative to the vote
cluster center).

VoteNet loss function details. The network is trained
end-to-end with a multi-task loss including a voting loss,
an objectness loss, a 3D bounding box estimation loss and
a semantic classification loss. We weight the losses such
that they are in similar scales with λ1 = 0.5, λ2 = 1 and
λ3 = 0.1.

LVoteNet = Lvote-reg + λ1Lobj-cls + λ2Lbox + λ3Lsem-cls (1)

Among the losses, the vote regression loss is as defined
in the main paper (with L1 distance). For ScanNet we com-
pute the ground truth votes as offset from the mesh ver-
tices of an instances to the centers of the axis-aligned tight
bounding boxes of the instances. Note that since the bound-
ing box is not amodal, they can vary in sizes due to scan
completeness (e.g. a chair may have a floating bounding
box if its leg is not recovered from the reconstruction). For
SUN RGB-D since the dataset does not provide instance
segmentation annotations but only amodal bounding boxes,
we cannot compute a ground truth vote directly (as we don’t
know which points are on objects). Instead, we consider any
point inside an annotated bounding box as an object point
(required to vote) and compute its offset to the box center as
the ground truth. In cases that a point is in multiple ground
truth boxes, we keep a set of up to three ground truth votes,
and consider the minimum distance between the predicted
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layer name input layer type output size layer params
sa1 raw point cloud SA (2048,3+128) (2048,0.2,[64,64,128])
sa2 sa1 SA (1024,3+256) (1024,0.4,[128,128,256])
sa3 sa2 SA (512,3+256) (512,0.8,[128,128,256])
sa4 sa3 SA (256,3+256) (256,1.2,[128,128,256])
fp1 sa3, sa4 FP (512,3+256) [256,256]
fp2 sa2, sa3 FP (1024,3+256) [256,256]

Table 1. Backbone network architecture: layer specifications.

vote and any ground truth vote in the set during vote regres-
sion on this point.

The objectness loss is just a cross-entropy loss for two
classes and the semantic classification loss is also a cross-
entropy loss of NC classes.

The box loss follows [3] (but without the corner loss reg-
ularization for simplicity) and is composed of center regres-
sion, heading estimation and size estimation sub-losses. In
all regression in the box loss we use the robust L1-smooth
loss. Both the box and semantic losses are only computed
on positive vote clusters and normalized by the number of
positive clusters. We refer readers to [3] for more details.

Lbox = Lcenter-reg + 0.1Langle-cls + Langle-reg

+ 0.1Lsize-cls + Lsize-reg
(2)

One difference though is that, instead of a naive regres-
sion loss, we use a Chamfer loss [1] for Lcenter-reg (between
regressed centers and ground truth box centers). It requires
that each positive proposal is close to a ground truth ob-
ject and each ground truth object center has a proposal near
it. The latter part also influences the voting in the sense
that it encourages non-object seed points near the object to
also vote for the center of the object, which helps further
increase contexts in detection.

BoxNet architecture details. Our baseline network with-
out voting, BoxNet, shares most parts with the VoteNet.
They share the same backbone architecture. But instead of
voting from seeds, the BoxNet directly proposes bounding
boxes and classifies object classes from seed points’ fea-
tures. To make the BoxNet and VoteNet have similar capac-
ity we also include a SA layer for the proposal in BoxNet.
However this SA layer takes seed clusters instead of vote
clusters i.e. it samples seed points and then combines neigh-
boring seeds with MLP and max-pooling. This SA layer has
exactly the same layer parameters with that in the VoteNet,
followed by the same MLP2.

BoxNet loss function details. BoxNet has the same loss
function as VoteNet, except it is not supervised by vote re-
gression. There is also a slight difference in how objectness

labels (used to supervise objectness classification) are com-
puted. As seed points (on object surfaces) are often far from
object centroids, it no longer works well to use the distances
between seed points and object centroids to compute the ob-
jectness labels. In BoxNet, we assign positive objectness
labels to seed points that are on objects (those belonging to
the semantic categories we consider) and negative labels to
all the other seed points on clutter (e.g. walls, floors).

LBoxNet = λ1Lobj-cls + λ2Lbox + λ3Lsem-cls (3)

A.2. More Analysis Experiments

Average precision and recall plots Fig. 1 shows how av-
erage precision (AP) and average recall (AR) change as we
increase the number of proposals. The AP and AR are both
averaged across 10 categories on SUN RGB-D. We report
two ways of using the proposals: joint and per-class. For
the joint proposal we propose K objects’ bounding boxes
for all the 10 categories, where we consider each proposal
as the semantic class it has the largest confidence in, and
use their objectness scores to rank them. For the per-class
proposal we duplicate the K proposal 10 times thus have
K proposals per class where we use the multiplication of
semantic probability for that class and the objectness prob-
ability to rank them. The latter way of using proposals gives
us a slight improvement on AP and a big boost on AR.

We see that with as few as 10 proposals our VoteNet can
achieve a decent AP of around 45% while having 100 pro-
posals already pushes the AP to above 57%. With a thou-
sand proposals, our network can achieve around 78.7% re-
call with joint proposal and around 87.7% recall with per-
class proposal.

Context of voting One difference of a deep Hough vot-
ing scheme with the traditional Hough voting is that we can
take advantage of deep features, which can provide more
context knowledge for voting. In Table 4 we show how fea-
tures from different levels of the PointNet++ affects detec-
tion performance (from SA2 to FP3, the network has in-
creasing contexts for voting). FP3 layer is extended from
the FP2 with a MLP of output sizes 256 and 256 with 2048
output points (the same set of XYZ as that output by SA1).



cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP

3DSIS 5views [2] 19.76 69.71 66.15 71.81 36.06 30.64 10.88 27.34 0.00 10.00 46.93 14.06 53.76 35.96 87.60 42.98 84.30 16.20 40.23
3DSIS Geo [2] 12.75 63.14 65.98 46.33 26.91 7.95 2.79 2.30 0.00 6.92 33.34 2.47 10.42 12.17 74.51 22.87 58.66 7.05 25.36
VoteNet ours 36.27 87.92 88.71 89.62 58.77 47.32 38.10 44.62 7.83 56.13 71.69 47.23 45.37 57.13 94.94 54.70 92.11 37.20 58.65

Table 2. 3D object detection scores per category on the ScanNetV2 dataset, evaluated with mAP@0.25 IoU.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP

3DSIS 5views [2] 5.73 50.28 52.59 55.43 21.96 10.88 0.00 13.18 0.00 0.00 23.62 2.61 24.54 0.82 71.79 8.94 56.40 6.87 22.53
3DSIS Geo [2] 5.06 42.19 50.11 31.75 15.12 1.38 0.00 1.44 0.00 0.00 13.66 0.00 2.63 3.00 56.75 8.68 28.52 2.55 14.60
VoteNet (ours) 8.07 76.06 67.23 68.82 42.36 15.34 6.43 28.00 1.25 9.52 37.52 11.55 27.80 9.96 86.53 16.76 78.87 11.69 33.54

Table 3. 3D object detection scores per category on the ScanNetV2 dataset, evaluated with mAP@0.5 IoU.
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Figure 1. Number of proposals per scene v.s. Average Precision
(AP) and Average Recall (AR) on SUN RGB-D. The AP and AR
are averaged across the 10 classes. The recall is maximum recall
given a fixed number of detection per scene. The “joint proposal”
means that we assign each proposal to a single class (the class with
the highest classification score); The “per-class proposal” means
that we assign each proposal to all the 10 classes (the objectness
score is multipled by the semantic classification probability).

It is surprising to find that voting from even SA2 can
achieve reasonable detection results (mAP 51.2%) while
voting from FP2 achieves the best performance. Having
larger context (e.g. FP3) than FP2 does not show further
improvements on the performance.

Seed layer SA2 SA3 SA4 FP1 FP2 FP3

mAP 51.2 56.3 55.1 56.6 57.7 57.1

Table 4. Effects of seed context for 3D detection. Evaluation
metric is mAP@0.25 on SUN RGB-D.

Multiple votes per seed In default we just generate one
vote per seed since we find that with large enough context
there is little need to generate more than one vote to resolve
ambiguous cases. However, it is still possible to generate
more than one vote with our network architecture. Yet to
break the symmetry in multiple vote generation, one has to
introduce some bias to different votes to prevent then from
pointing to the same place.

In experiments, we find that one vote per seed achieves

Figure 2. Vote meeting point. Left: ScanNet scene with votes
coming from object points. Right: vote offsets from source seed-
points to target-votes. Object votes are colored green, and non-
object ones are colored red. See how object points from all-parts of
the object vote to form a cluster near the center. Non-object points,
however, either vote “nowhere” and therefore lack structure, or are
near object and have gathered enough context to also vote properly.

the best results, as shown in Table 5. We ablate by using a
vote factor of 3, where the voting module generates 3 votes
per seed with a MLP layer spec: [256, 256, 259 ∗ 3]). In
computing the vote regression loss on a seed point, we con-
sider the minimum distance between any predicted votes to
the ground truth vote (in case of SUN RGB-D where we
may have a set of ground truth votes for a seed, we compute
the minimum distance among any pair of predicted vote and
ground truth vote).

To break symmetry, we generate 3 random numbers and
inject them to the second last features from the MLP layer.
We show results both with and without this procedure which
shows no observable difference.



Vote factor 1 3 3
Random number N N Y

mAP 57.7 55.8 55.8

Table 5. Effects of number of votes per seed. Evaluation metric
is mAP@0.25 on SUN RGB-D. If random number is on, we con-
catenate a random number to the seed feature before voting, which
helps break symmetry in the case of multiple votes per seed.

Proposal sampling mAP

Random sampling 57.5
Farthest point sampling on votes 57.2
Farthest point sampling on seeds 57.7

Table 6. Effects of proposal sampling. Evaluation metric is
mAP@0.25 on SUN RGB-D. 256 proposals are used for all eval-
uations. Our method is not sensitive to how we choose centers for
vote groups/clusters.

On proposal sampling In the proposal step, to generate
K proposals from the votes, we need to select K vote clus-
ters. How to select those clusters is a design choice we study
here (each cluster is simply a group of votes near a center
vote). In Table 6, we report mAP results on SUN RGB-D
with 256 proposals (joint proposal) using cluster sampling
strategies of vote FPS, seed FPS and random sampling,
where FPS means farthest point sampling. From 1024 vote
clusters, vote FPS samplesK clusters based on votes’ XYZ.
Seed FPS firstly samples on seed XYZ and then finds the
votes corresponding to the sampled seeds – it enables a di-
rect comparison with BoxNet as it uses the same sampling
scheme, making the two techniques similar up to the space
in which the points are grouped: VoteNet groups votes ac-
cording to vote XYZ, while BoxNet groups seeds according
to seed XYZ. Random sampling simply selects a random set
ofK votes and take their neighborhoods for proposal gener-
ation. Note that the results from Table 6 are from the same
model trained with vote FPS to select proposals.

We can see that while seed FPS gets the best number in
mAP, the difference caused by different sampling strategies
is small, showing the robustness of our method.

Effects of the height feature In point clouds from indoor
scans, point height is a useful feature in recognition. As
mentioned in the main paper, we can use 1% of the Z val-
ues (Z-axis is up-right) of all points from a scan as an ap-
proximate as the floor height zfloor, and then compute the
a point (x, y, z)’s height as z − zfloor. In Table 7 we show
how this extra height feature affect detection performance.
We see that adding the height feature consistently improves
performance in both SUN RGB-D and ScanNet.

Dataset with height without height

SUN RGB-D 57.7 57.0
ScanNet 58.6 58.1

Table 7. Effects of the height feature. Evaluation metric is
mAP@0.25 on both datasets.

A.3. ScanNet Per-class Evaluation

Table 2 and Table 3 report per-class average precision
on 18 classes of ScanNetV2 with 0.25 and 0.5 box IoU
thresholds respectively. Relying on purely geonetric data,
our method excels (esp. with mAP@0.25) in detecting ob-
jects like bed, chair, table, desk etc. where geometry is a
strong cue for recognition; and struggles with objects best
recognized by texture and color like pictures.

A.4. Visualization of Votes

Fig. 2 shows (a subset of) votes predicted from our
VoteNet in a typical ScanNet scene. We clearly see that
seed points on objects (bed, sofa etc.) vote to object centers
while clutter points vote either to object center as well (if
the clutter point is close to the object) or to nowhere due to
lack of structure in the clutter area (e.g. a wall).
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