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Abstract

This documents provides additional information regard-
ing our main paper, network architecture and detailed im-
plementations . Furthermore, we provide extend results to
illustrate the advantages of our method due to space limits.
The supplementary material is organized as follows:

• Sec. 1 illustrates the basic formulation and usage of
C-VAE on solving our problems.

• Sec. 2 presents effects of weight normalization in de-
tail, including loss curves and further analysis.

• Sec. 3 describes the network architecture used in ex-
periments.

• Sec. 4 provides more experiments details, including
detailed datasets descriptions, AMT perceptual scores
used and specific implementations.

• Sec. 5 shows additional experiments results on more
datasets, including more general non-human cases.
We also demonstrate more applications using our
model, including face animation and video generation.

1. Modeling faces based on latent shape and
appearance

Given samples x from a face dataset, it is straightfor-
ward to use VAEs which aim at modeling the data likeli-
hood p(x). As VAEs assume that the data points x around a
low-dimensional manifold could be parameterized by latent
embeddings z. The decoder is employed to obtain x based
on latent representation z. As a result, in order to make pos-
terior p(z|x) tractably computable, a encoder is applied to
approximate it with a distribution q(z|x). Thus, VAEs are
based on the formulation:

log p(x)−DKL[q(z|x), p(z|x)] = Eq(z|x)[log p(x|z)]
−DKL[q(z|x), p(z)]

(1)

However, for tasks like face manipulation or conditional im-
age synthesis, synthesized images are conditioned by two
factors y, z. Let y denotes head pose information, includ-
ing motion, expression, yaw angles and other spatial infor-
mation. z should refer to internal appearance information.
Apparently, according to the formulation in equation 1, z
couldn’t be well separated and thus are not able to satisfy
our goal in dealing with tasks like face manipulation.

As discussed in the main paper, in order to disentan-
gle the two factors, y and z and learn the distribution
p(x|y, z). As y could provide additional spatial informa-
tion(landmarks in our case), the latent variable z could be
inferred by maximizing their conditional log likelihood:

logp(x|y) = log

∫
z

p(x, z|y)dz ≥ Eq
p(x, z|y)
q(z|x, y)

(2)

= Eqlog
p(z|, y, z)p(z|y)

q(z|x, y)
(3)

According to equation 2, the evidence lower bound (ELBO)
now depends on the conditional prior p(z|y). Thus more
semantic correlations between spatial and appearance infor-
mation could be captured.

2. Weight Normalization and its Effects
As mentioned before, for model training, weight normal-

ization [10] is utilized. As has been tailored in GAN-based
approaches, different normalization tricks are used mostly
in order to stabilize adversarial training steps.

For VAE-based generative models, which are particu-
larly noise-sensitive, potential noises brought by normal-
ization tricks [4] would reduce the diversity of generated
samples significantly, while the absence of normalization
tricks would affect model’s convergence. Hence we tailor
this strategy to both encoder and decoder of our model. As
can be seen from Fig. 1, models trained with weight normal-
ization have faster convergence and lower reconstruction
loss than the one without WN over training iterations. We
also compare using ’vanilla’ weight normalization with us-
ing weight normalization and sub pixel(pixel shuffle) con-
volution as ablative study. The blue curve represents us-
ing WN and PS is covered by the red one. It shows that



Figure 1: Training Curve w/wo pixel-shuffle and WN.

weight normalization help training converge and enhance
model’s generative power. These curves also supports that
pixel shuffle and weight normalization helps synthesis re-
spectively in a different way as we conveyed in the main
paper.

Specifically, Batch normalization re-calibrates the mean
and variance of intermediate features to solve the problem
of internal covariate shift during deep nets training, its for-
mulation doesn’t fit generative tasks very well with two
drawbacks: on the one hand, for high-fidelity/resolution im-
age synthesis, small mini-batch sizes are always applied due
to limited GPU memory. On the other hand, especially for
VAE-based ’noise-sensitive’ variants, with imposed distri-
bution constrains and noise gained by normalization tricks
statistics, VAE’s performance would be constrained signifi-
cantly.
Formulation Assume the output y is with the form:

y = w · x+ b, (4)

where w is a k-dimensional vector representing weight, b
is the bias term, x is a k-dimensional input features. WN
re-parameterizes the weight using

w =
g

||v||
v, (5)

where v is a k-dimensional vector, g is a scalar, and ||v||
denotes the Euclidean norm of v. With this formalization,
we will have ||w||= g, independent of parameters v.

In practice, normalization tricks could stabilize GAN’s
training and aid model’s performance. While for VAE train-
ing, which optimize the KL divergene where the loss quanti-
ties could be large through training, weight normalization is
applied to avoid potentialities of collapse. Intuitively, WN
is just a normalization trick and doesn’t effect given repre-
sentation power. This phenomenon has also been observed

in image SR tasks [13] recently. Compared to BN, Weight
Normalization addresses these drawbacks using BN, also
eases the difficulty of training VAEs.

3. Network Architecture
In this section, we provide details regarding the network

architectures in our networks. Our network contains two
branches of encoder and one decoder, which is illustrated
in Fig. 2. For all the experiments which synthesize the size
of 256 × 256 images, we use 6 residual blocks for down-
sample. Detailed visualization can be found at Fig. 2 and
specific choices of parameters can be found at Tables. 1 2.

Figure 2: Our basic model architecture. Skip connection on the
structure branch is incorporated. As mentioned, we down-sample
6 times for a image during our most experiments. During training,
we sample the appearance distribution.

Layer Kernel Size Output Channel Output Size
Input - 3 256

Convolution 3 64 256
Pooling 2 64 128

Convolution 3 128 128
Pooling 2 128 64

Convolution 3 256 64
Pooling 2 256 32

Convolution 3 512 32
Pooling 2 512 16

Convolution 3 512 16
Pooling 2 512 8

Convolution 3 512 8
Pooling 2 512 4
Output - 512 4

level1 output - 512 8

Table 1: Details parameters of encoders, upper-branch encoder
share the same architecture of the lower one.



Layer Kernel Size Output Channel Output Size
Input - 512 4

Convolution 3 2048 4
Pixel Shuffle - 512 8

Concat - 1024 8
Convolution 3 2048 8
Pixel Shuffle - 512 16

Concat - 1024 16
Convolution 3 1024 16
Pixel Shuffle - 256 32

Concat - 512 32
Convolution 3 512 32
Pixel Shuffle - 128 64

Concat - 256 64
Convolution 3 256 64
Pixel Shuffle - 64 128

Concat - 128 128
Convolution 3 12 128
Pixel Shuffle - 3 256

Table 2: Details of decoders. Note that for fused feature is not
included in the parameters since it depends on how many levels of
latent features to be fused.

4. Experiments Details
In this section, more details of experiments are provided.

We first introduce all datasets we used in details in Sec. 4.1.
Then specific settings and usage of evaluation protocols are
shown in Sec. 4.2. We also provide more implementation
details in Sec. 4.3.

4.1. Dataset descriptions

We evaluate our model on RafD [7], MultiPIE [2],
CelebA [8] and 3D synthesized datasets, containing both
indoor and in-the-wild scenarios. We also conduct exper-
iments on none-human datasets, including hands [1] and
cats datasets, in order to demonstrate the generalizability of
our approach. Followings are detailed descriptions of each
dataset we used in experiment.

For real-word human faces datasets: (1)RafD [7] dataset
consists of 4, 824 images collected from 67 participants
with 8 facial expressions in three different gaze directions
for each person. (2) MultiPIE [2] consists of 20 illumina-
tion conditions, 13 poses within 90 yaw angles and 6 ex-
pressions of 337 subjects. These two datasets are captured
in controlled environments. (3) CelebA [8] is a large-scale
face attributes dataset in uncontrolled environment, which
contains 202, 599 face images of celebrities with large pose
variations and background clutter.

For 3D synthetic face data, we employ 3DMM [9] to
create 17920 distinct faces image with 10 shapes indicate
10 different types of facial structures. Each face has been
rendered at 8 types of random texture and 4 different light-
ing environment have been used. Also, 8 expressions are
chose for each faces. The orientation of faces is allowed to

vary in azimuth from 0◦ to 180◦ by increments of 30◦.
For non-human datasets. We use hand and cat. (1)

Hands. The landmarks of each hands is obtained using
pre-trained hand detector. Then the skeleton is interpolated
using the landmarks obtained. (2)Cats, we crawled cats im-
age from the Internet. Then, each cat face is annotated with
18 landmarks.

For each datasets, 90% identities are used for training.
and the left 10% are fed into the model for testing.

4.2. Evaluation Metrics

We evaluate the realism perceptual quality and diversity
of synthesis results using different metrics. Human sub-
jective study on Amazon Mechanical Turk (AMT) are con-
ducted for realism measurement. Detailed illustrations of
metrics we used are provided:

TS (TrueSkill) [3] and FR (Fool Rate) are reported.
Specifically, TS is a skill-based ranking system containing
multiple players that allows us to compare our method with
other methods. In practice, we randomly select two images
generated by three algorithms. The participant is asked to
decide which image demonstrates better quality. FR is used
to evaluate the fidelity of generated images based on direct
comparison with real images. Given two samples, a partic-
ipant is asked to distinguish the real one. Note that since
pix2pixHD [12] solely depends on condition and are not
able to preserve the reference person. Thus we didn’t con-
duct Fool Rate evaluation using pix2pixHD.

4.3. Implementation Details

Before training, all faces are cropped and aligned to
256×256. For the network structure, details can be found at
Fig. 2. PReLU [11] is used as the activation function. Each
BN module in residual block is replaced by WN module and
sub-pixel convolution is used for up-sampling.

At training, we used Adam [6] optimizer with learning
rate of 0.001, beta1 0.5, beta2 0.999 and batch size 4 on a
single GTX TITANX GPU. For the feature matching loss
using VGG-19, we simply follow perceptual loss [5]. The
coefficient of KL divergence loss is set to 1.

5. Additional Experiments Results
Followings are additional experiments for comprehen-

sive demonstration.

5.1. Comparison with Pix2pixHD

we also conduct comparison with pix2pixHD [12], a
fully-supervised and general image-to-image translation
framework which can also work well in our settings. The
result can be found at Fig. 3. As shown, pix2pixHD are
likely to generate images with certain blur mainly due to its
poor generalizability to unseen inputs. Besides, as it only
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Figure 3: Comparison with Pix2PixHD [12] on RaFD. The left image denotes the source image. The first row shows 8 target boundary
references. The second row shows images synthesized by pix2pixHD. The third row presents image generated by our algorithm. pix2pixHD
takes boundary reference as input and thus are not able to keep source identity.

takes boundary reference as its input, it is not able to keep
the identity of source image, making generated results ’un-
controllable’. In contrast, our approach are able to synthe-
sis photo-realistic faces with appealing perceptual quality
as well as maintaining the source appearance.

Besides, our model is also able to generate diverse out-
puts given fixed boundary reference input. As shown in
Fig. 4, we sample appearance and condition on boundary
maps. Compared to Pix2PixHD’s ‘same’ outputs when
tested multiple times, our model has much higher diversity.

5.2. Face Manipulation on 3D Synthetic Data

In order to better observe variations on appearance dur-
ing manipulation, also expect light/texture-preserving na-
ture of our model, we also conduct qualitative experiments
on 3D synthetic face manipulation in Fig. 6.

As shown, factors including skin,texture,lighting can be
well preserved, which better testify to the great disentangle-
ment of our model.

5.3. Face Manipulation from single image

In this subsection, we conduct face manipulation from a
single image. By randomly modify the landmarks/boundary
maps, our model are able to generate diverse and photo-
realistic results which maintains the given appearance. Ma-
nipulating results can be found at Fig. 7.

5.4. Non-human Cases

Experiments on non-human datasets are aimed at testi-
fying the generalizability of our model. We conduct experi-
ments on hands, cats dataset with the same hyper-parameter
settings used in face datasets. Besides, we also test our
CelebA-trained model on other stylized faces.

We test our model which trained using real world human
face dataset(CelebA) on unreal stylized faces(e.g. cartoon,
sketch) in Fig. 5, presenting the robustness of our model.

5.5. Face Animation and Video Generation

We also conduct experiments on face animation and
video generation. Our method can perform video face an-
imation from a single image. Given a single source im-
age and an target video with its landmarks(could be ma-
nipulated), by feeding those original landmarks and source
image to our model frame by frame, the generated videos
could be animated face results where the source face acts
like the the face in the original video. Our framework can
generate high-quality video as well as maintaining correla-
tions on Facial Action Consistency, as shown in Fig. 8.

5.6. Missing Identity Issues in Arbitrary Face Ma-
nipulation

As discussed in main paper, arbitrary face manipulation
potentially leads to identity changing issues. In this section,
we provide a quantitative analysis about identity in Table. 3,
using Verification accuracy to compare with input’s neutral
face. During experiment, The model is trained on CelebA
dataset and tested on Rafd dataset. Each input face image is
assigned with 8 target boundary maps. We report the accu-
racy of both using same source landmarks and random se-
lecting from the dataset. It illustrate that landmark informa-
tion implicit covers partial identity information. Our model
is capable of preserving identities when the landmarks be-
longs to same source. Note that there exists no prior knowl-
edge about identity, e.g. pre-trained face recognition model,
indicating that our framework could implicitly encode iden-
tity information beyond appearance.
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Figure 4: Comparison with pix2pixHD [12] on the diversity of sampling results. Two source boundary maps are taken as input. The first
row shows images synthesized by pix2pixHD, each source genrating 4 samples. The second and third rows present images generated by
our model with randomly sampled 8 appearances from the dataset each source.

Input(×8) Frontal Profile
±45◦ ±90◦

Random Source 29.3% 20.7% 10.1%
Same Source 95.8% 87.3% 61.2%

Table 3: Face verification results on Rafd dataset. Generator
is trained on CelebA. Input column denotes the landmark source
from the original person or random.

Source Manipulated

Figure 5: Testing results on special stylized face(cartoon,
sketch). Note that the model is trained on real world CelebA
dataset and haven’t seen peculiar faces before. The first line
on the left presents four source faces. For each image given,
four manipulated results are provided to the right.

Figure 6: Face manipulation results on 3D image by modify the
location of its landmarks. Images on the left with blue boxes are
source images. Images on the right each odd row represents target
boundary maps and each even row shows corresponding synthe-
sized results.



Figure 7: Extensive results about face manipulation on RafD dataset. For each row, the left most one is the input source face. Then the
model is fed with the person’s boundary maps of 8 target expressions. On the right are 8 synthesized results under target poses. Note that
boundary maps each row used are different and unseen during training.
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Figure 8: Analysis on Facial Action Consistency. Given a single image and a video, the output video is generated by the given image
and landmarks in the video frame by frame. We use a facial action detector to obtain responses from our model. 8 representative AUs are
selected to show the correlation of AUs response between our result and the source video. Each graph shows AUs response vs time.
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