Transductive Episodic-Wise Adaptive Metric for Few-Shot Learning #### SUPPLEMENTARY MATERIAL ### 1. The Proof for Lemma 1 **Lemma 1** Let \mathcal{X}, \mathcal{Y} be two symmetric and positive-define matrices of the same size, then the function: $$f(\mathcal{X}) = tr(\mathcal{X}\mathcal{Y}) - logdet(\mathcal{X})$$ is minimized uniquely by: $$\mathcal{X}^* = \mathcal{Y}^{-1}$$ *PROOF.* First of all, by introducing an auxiliary variable $\mathcal{Z} = \mathcal{Y}^{\frac{1}{2}}\mathcal{X}\mathcal{Y}^{\frac{1}{2}}$ (note that \mathcal{Z} is symmetric and positive-define iff \mathcal{X} is), and the conclusion $log \ det(A) = tr(log(A))$ which has been proved in [15], then we have: $$f(\mathcal{X}) = tr(\mathcal{X}\mathcal{Y}) - \log \det(\mathcal{X})$$ $$= tr(\mathcal{Y}^{-\frac{1}{2}}\mathcal{Z}\mathcal{Y}^{-\frac{1}{2}}\mathcal{Y}) - \log \det(\mathcal{Y}^{-\frac{1}{2}}\mathcal{Z}\mathcal{Y}^{-\frac{1}{2}})$$ $$= tr(\mathcal{Z}\mathcal{Y}^{-\frac{1}{2}}\mathcal{Y}\mathcal{Y}^{-\frac{1}{2}}) - tr(\log(\mathcal{Y}^{-\frac{1}{2}}\mathcal{Z}\mathcal{Y}^{-\frac{1}{2}}))$$ $$= tr(\mathcal{Z}) - tr(\log(\mathcal{Z})) + tr(\log(\mathcal{Y}))$$ $$= tr(\mathcal{Z}) - \log \det(\mathcal{Z}) + \log \det(\mathcal{Y})$$ (1) According to Eq. (1), minimizing $f(\mathcal{X})$ is equivalent to optimizing the following equations $g(\mathcal{Z})$: $$q(\mathcal{Z}) = tr(\mathcal{Z}) - log \ det(\mathcal{Z}) \tag{2}$$ If \mathcal{Z} has eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, then we rewrite Eq. (2) as: $$g(\mathcal{Z}) = \sum_{i=1}^{n} \lambda_i - \log \prod_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} (\lambda_i - \log(\lambda_i))$$ Now $h(\lambda) = \lambda - log(\lambda)$ is minimized uniquely at $\lambda = 1$, so $g(\mathcal{Z})$ is minimized uniquely when $\mathcal{Z} = \mathcal{I}$. Finally, combining this equation with $\mathcal{Z} = \mathcal{Y}^{\frac{1}{2}} \mathcal{X} \mathcal{Y}^{\frac{1}{2}}$, we thus have the solution as: $\mathcal{X}^* = \mathcal{Y}^{-1}$ # 2. Detailed Experimental Results In this section, we provide further experimental results over three few-shot benchmark datasets, the ablation study and more visualization in detail. #### 2.1. Accuracy with 95% Confidence Interval To verify the effectiveness of our approach for few-shot classification, we compare the TEAM framework with our reimplemented baseline (ProtoNet [12]) and many start-of-the-art methods in various setting on three benchmark datasets (*mini*-ImageNet, Cifar-100 and CUB). All results are shown in Table 1-3. Note that each accuracy is averaged over 1000 test tasks which are randomly selected from the testing set and reported with 95% confidence intervals for comparison. #### 2.2. The performance with various training/testing shots. In order to verify the nature of transduction [5, 6], where more training data are available, the less performance improvement will be, we further perform 5-way k-shot (k=1, 3, 5, 7, 9) experiments on mini-ImageNet and all results are shown in Table. 5. As the number of shots increases, TEAM consistently outperforms our baseline with a large margin, but the performance improvement from TEAM decreases slightly, which further verifies the above analysis about transductive inference. Table 1. Few-shot classification accuracy on miniImageNet. Tran: The different type of transduction. Top results are highlighted. | Model | Tran. | 5-Way | 1-Shot | 5-Way 5-Shot | | |------------------|-------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | | | ConvNet | ResNet | ConvNet | ResNet | | MatchNet [13] | No | 43.56 ± 0.84 | - | 55.31 ± 0.73 | - | | MAML [2] | BN | 48.70 ± 1.84 | - | 63.10 ± 0.92 | - | | MAML+ [6] | Yes | 50.83 ± 1.85 | - | 66.19 ± 1.85 | - | | Reptile [8] | BN | 49.97 ± 0.32 | - | 65.99 ± 0.58 | - | | ProtoNet [12] | No | 49.42 ± 0.78 | - | 68.20 ± 0.66 | - | | GNN [3] | No | 50.33 ± 0.36 | - | 64.02 ± 0.51 | - | | RelationNet [16] | BN | 50.44 ± 0.82 | - | 65.32 ± 0.70 | - | | PFA [10] | No | 54.53 ± 0.40 | 59.60 ± 0.41 | 67.87 ± 0.20 | 73.74 ± 0.19 | | TADAM [9] | No | - | 58.50 ± 0.30 | - | $\textbf{76.70} \pm \textbf{0.30}$ | | adaResNet [7] | No | - | 56.88 | - | 71.94 | | LEO [11] | No | - | 60.06 ± 0.08 | - | 75.72 ± 0.12 | | TPN [6] | Yes | 55.51 ± 0.86 | 59.46 | 69.86 ± 0.65 | 75.65 | | Baseline (Ours) | No | 51.68 ± 0.31 | 55.25 ± 0.20 | 68.71 ± 0.20 | 70.58 ± 0.40 | | TEAM (Ours) | Yes | $\textbf{56.57} \pm \textbf{0.21}$ | $\textbf{60.07} \pm \textbf{0.32}$ | $\textbf{72.04} \pm \textbf{0.12}$ | 75.90 ± 0.20 | Table 2. Few-shot classification performance on Cifar-100. Tran: The different type of transduction. Top results are highlighted. | Model | Tran. | 5-Way | 1-Shot | 5-Way 5-Shot | | | |-----------------|-------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--| | | | ConvNet | ResNet | ConvNet | ResNet | | | MatchNet [13] | No | 50.53 ± 0.87 | - | 60.30 ± 0.82 | - | | | MAML [2] | BN | 49.28 ± 0.90 | - | 58.30 ± 0.80 | - | | | ProtoNet [12] | No | 56.66 ± 0.53 | - | 76.29 ± 0.14 | - | | | DEML [4] | No | - | 61.62 ± 1.01 | - | 77.94 ± 0.74 | | | Baseline (Ours) | No | 57.83 ± 0.27 | 66.30 ± 0.40 | 76.40 ± 0.33 | 80.46 ± 0.27 | | | TEAM (Ours) | Yes | $\textbf{64.07} \pm \textbf{0.30}$ | $\textbf{70.43} \pm \textbf{0.24}$ | $\textbf{79.05} \pm \textbf{0.38}$ | $\textbf{81.25} \pm \textbf{0.22}$ | | Table 3. Few-shot classification performance on CUB. Tran: The different type of transduction. Top results are highlighted. | Model | Tran. | 5-Way | 1-Shot | 5-Way 5-Shot | | |------------------|-------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | | | ConvNet | ResNet | ConvNet | ResNet | | MatchNet [13] | No | 56.53 ± 0.99 | - | 63.54 ± 0.85 | - | | MAML [2] | BN | 50.45 ± 0.97 | - | 59.60 ± 0.84 | - | | ProtoNet [12] | No | 58.43 ± 0.30 | - | 75.22 ± 0.36 | - | | RelationNet [16] | BN | 62.45 ± 0.98 | - | 76.11 ± 0.69 | - | | DEML [4] | No | - | 66.95 ± 1.06 | - | 77.11 ± 0.78 | | TriNet [1] | No | - | 69.61 ± 0.46 | - | 84.10 ± 0.35 | | Baseline (Ours) | No | 69.39 ± 0.20 | 74.55 ± 0.45 | 82.78 ± 0.24 | 85.98 ± 0.17 | | TEAM (Ours) | Yes | $\textbf{75.71} \pm \textbf{0.18}$ | $\textbf{80.16} \pm \textbf{0.48}$ | $\textbf{86.04} \pm \textbf{0.14}$ | $\textbf{87.17} \pm \textbf{0.45}$ | Table 4. Few-shot classification performance for ablation study. Proto (Ours): the baseline. $TEAM^{\ddagger}$: baseline+TIM. $TEAM^{\ddagger}$: baseline+TIM+EAM. TEAM: baseline+TIM+EAM+Bi-SIM. | Model | miniImageNet | | Cifar-100 | | CUB | | |--|--|--|--|--|--|--| | | 1-shot | 5-shot | 1-shot | 5-shot | 1-shot | 5-shot | | Proto [13] | 49.42 ± 0.78 | 68.20 ± 0.66 | 56.66 ± 0.53 | 76.29 ± 0.14 | 58.43 ± 0.30 | 75.22 ± 0.36 | | Proto (Ours)
TEAM [‡]
TEAM [†]
TEAM | 51.68 ± 0.31
52.97 ± 0.21
55.35 ± 0.25
56.57 ± 0.21 | 68.71 ± 0.20
70.45 ± 0.14
71.59 ± 0.12
72.04 ± 0.12 | 57.83 ± 0.27
59.56 ± 0.42
62.76 ± 0.41
64.07 ± 0.30 | 76.40 ± 0.33
77.65 ± 0.43
78.80 ± 0.40
79.05 ± 0.38 | 69.39 ± 0.20
70.27 ± 0.24
75.06 ± 0.25
75.71 ± 0.18 | 82.78 ± 0.24
84.68 ± 0.05
86.06 ± 0.09
86.04 ± 0.14 | ## 2.3. Sparsity Nature of Episodic-wise Adaptive Metric. For the sake of illustration, we firstly exploit the classic LMNN algorithm [14] with all support and query samples to optimize an oracle metric, which ensures all examples in this task can be completely distinguished, see Fig. 2 (left). Then we scale all elements of the metric into region [0, 1] and reorganize all values with numerical descending order in Fig. 2 (right). Table 5. 5-way performance with various training/testing shots. | Methods | 1-shot | 3-shot | 5-shot | 7-shot | 9-shot | |--------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | Baseline (Ours)
TEAM (Ours) | 51.68 ± 0.31
56.57 ± 0.21 | 63.87 ± 0.26
67.64 ± 0.21 | 68.71 ± 0.20
72.04 ± 0.12 | 71.28 ± 0.15
73.47 ± 0.16 | 73.35 ± 0.44
75.04 ± 0.19 | | Accuracy (+) | 4.89 | 3.77 | 3.33 | 2.19 | 1.69 | Obviously, there is a large value gap between the diagonal elements and the off-diagonal elements. Moreover, we further visualize the heatmap of the oracle metric in Fig. 1 in great detail. Figure 1. This figure illustrates the sparsity nature of the metric in few-shot learning. Left: The image embedding visualization using the oracle metric learned by LMNN. Right: The values distribution in different position of the matrix (sorted by descending order). Figure 2. The heatmap of the oracle metric. ## References - [1] Zitian Chen, Yanwei Fu, Yinda Zhang, Yu-Gang Jiang, Xiangyang Xue, and Leonid Sigal. Semantic feature augmentation in few-shot learning. *arXiv:1804.05298*, 2018. - [2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML, 2017. - [3] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In ICLR, 2017. - [4] Bharath Hariharan and Ross B Girshick. Low-shot visual recognition by shrinking and hallucinating features. In *ICCV*, pages 3037–3046, 2017. - [5] Thorsten Joachims. Transductive inference for text classification using support vector machines. In *ICML*, volume 99, pages 200–209, 1999. - [6] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate labels: Transductive propagation network for few-shot learning. In *ICLR*, 2018. - [7] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid adaptation with conditionally shifted neurons. In *ICML*, pages 3661–3670, 2018. - [8] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR, abs/1803.02999, 2, 2018. - [9] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive metric for improved few-shot learning. In NIPS, pages 719–729, 2018. - [10] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan Yuille. Few-shot image recognition by predicting parameters from activations. In *CVPR*, volume 2, 2017. - [11] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. In *ICLR*, 2019. - [12] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NIPS, pages 4077–4087, 2017. - [13] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. In *NIPS*, pages 3630–3638, 2016. - [14] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric learning for large margin nearest neighbor classification. In *NIPS*, pages 1473–1480, 2006. - [15] Christopher S Withers and Saralees Nadarajah. log det a= tr log a. *International Journal of Mathematical Education in Science and Technology*, 41(8):1121–1124, 2010. - [16] Flood Sung Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales. Learning to compare: Relation network for few-shot learning. In *CVPR*, 2018.