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1. Additional Experimental Results
We report here additional experiments to asses the con-

tribution of the different components of AT/DT. In Sec. 1.1
we conduct a study on the performance achievable on the
training domain A with G1→2. In Sec. 1.2 we show abla-
tion studies to confirm the key role ofG1→2 in our formula-
tion. In Sec. 1.3 we perform tests considering different ap-
proaches to build a shared feature representation forNA∪B

1 .
In Sec. 1.4 we provide additional details and results on the
integration of AT/DT with existing domain adaptation tech-
niques. In Sec. 1.5 we report qualitative results using nor-
mal estimation as target task (T2). Finally, in Sec. 2 and
Sec. 3 we provide additional details about the training and
evaluation processes.

1.1. Train domain performance of G1→2

Our framework has to overcome two nuisances to ef-
fectively address the lacking of supervision in the target
task and domain: translation of features between tasks and
change of domain. In this section, we are interested in iso-
lating the impact of the first nuisance, which will also pro-
vide some hints on the importance of the second one. In
other words, we are trying to answer the question: How
well are we effectively learning to translate deep represen-
tations?

To focus only on the effectiveness in transferring rep-
resentations, we consider a test set of images from A and
compare AT/DT and NA

2 (the network trained on domainA
for T2). As the test data are sampled from the same domain
as the training data, we do not have errors due to the domain
shift and can use the gap in performance between the two al-
gorithms as a measure of the effectiveness of our framework
in transferring representations. As we wish to evaluate both
semantic segmentation and depth estimation, we select the
Synthia domain asA, for which we have all labels available,
and Cityscapes as B. In Tab. 1 we report the results when
transferring deep representations in the Dep.→ Sem. sce-
nario, while in Tab. 2 in the Sem.→ Dep. scenario.

Tab. 1 shows how transferring deep representations from
T1 to T2 with AT/DT results in a small loss in perfor-

mance compared to NA
2 . In particular, the largest perfor-

mance drops are related to classes dealing with small ob-
jects, like ‘Fence’, ‘Poles’ and ‘Traffic Sign’, that might get
lost transferring features at the smallest spatial resolution in
the network. These results suggest that a multi-scale trans-
fer strategy would be a direction worth exploring in future
work to better recover small details upon transferring repre-
sentations. Nevertheless, the comparisin between the final
pixel accuracy (Acc.) highlights that AT/DT loses only 1%
though relying on a feature extractor trained for a different
task.

In Tab. 2 AT/DT obtains again performance close toNA
2 .

For some metrics, it even delivers better performance than
NA

2 . This somewhat surprising result can be explained by
the difference between the training sets: AT/DT uses as fea-
ture extractor NA∪B

1 , which has been trained with samples
from both A and B, i.e. with a larger and more varied train-
ing set than that used by NA

2 . Therefore, the encoder of
NA∪B

1 might learn a more general feature extractor than
that of NA

2 , this resulting in better performance when ap-
plied on unseen data. AT/DT can successfully leverage on
this better feature extractor and obtain slightly better perfor-
mance when transferring them to T2.

The same reasoning may be applied to the results of
Tab. 1. However, in this case, the shared encoder of NA∪B

1

has been partially trained with noisy ground truth depth la-
bels on samples from B. The introduction of noise in the
training process might harm the learning of NA∪B

1 and ex-
plain the small gap in performance. Moreover, as stated
above, due to the transferring of features at low resolution,
AT/DT might struggle to transfer small image structures
(e.g., ‘poles’, ‘traffic sign’. . . ). However, wrong predictions
on this kind of small structures do not arm much the depth
estimation metrics (i.e., few pixels are considered), though
they have a larger impact on the mIoU metric considered for
semantic segmentation. Finally, as stated in [2], the advan-
tages yielded by semantic information to depth estimation
are larger than the gains attainable going in the other direc-
tion, thus motivating the slight difference in performance
across the two scenarios.

1



A Method R
oa

d

Si
de

w
al

k

W
al

ls

Fe
nc

e

Pe
rs

on

Po
le

s

V
eg

et
at

io
n

V
eh

ic
le

s

Tr
.S

ig
ns

B
ui

ld
in

g

Sk
y

mIoU Acc

Synthia NA
2 99.23 87.16 92.67 28.62 48.53 63.54 85.02 88.92 52.67 96.91 98.39 76.52 98.45

Synthia AT/DT 98.34 76.09 84.99 1.06 29.25 45.57 80.15 85.72 25.31 95.53 97.45 65.41 97.53

Table 1: Experimental results of Dep. → Sem. scenario using as domain A the Synthia dataset. Best results highlighted in
bold.

Lower is better Higher is better
A Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Synthia NA
2 0.138 1.212 4.759 0.825 0.864 0.952 0.970

Synthia AT/DT 0.135 1.271 5.061 0.634 0.863 0.958 0.977

Table 2: Experimental results of Sem. → Dep. scenario using as domain A the Synthia dataset. Best results highlighted in
bold.

Overall, the results reported in Tab. 2 and Tab. 1 show
that our framework is indeed learning to transfer deep rep-
resentations effectively and that it is possible to approxi-
mate G1→2 by a neural network like that we propose in this
work. This is further validated in Fig. 1, where we report
two t-SNE[3] plots of deep features extracted by NA∪B

1 (in
pink), NA

2 (in blue) alongside with the features transformed
byG1→2 (in red). All features are computed on image sam-
ples from the test set described above, i.e. samples unseen
at training time. Therefore, G1→2 takes as input pink points
and produces red points that should be as close as possible
to the blue points. Indeed, the two plots show how our task
transfer network can successfully produce features suitable
for T2.

1.2. Importance of G1→2

We report results of additional tests to further assess the
importance of G1→2 in our cross tasks and domains adap-
tation. Purposely, we consider a single network made out
of one encoder, EA∪B

1,2 and two decoders, DA∪B
1 and DA

2 .
DA∪B

1 is trained with samples from A and B for T1. DA
2

is trained with samples from A for T2. Finally, EA∪B
1,2 is

trained together with the two heads with both tasks and
domains. Therefore we consider a single feature extractor
which yields a shared representation for both tasks and do-
mains without the need to learn a transfer function between
tasks. We will refer to this configuration as the No Transfer
setting.

We evaluate No Transfer for both Dep. → Sem. and
Sem. → Dep. settings from Carla to Cityscapes and
compare it to AT/DT and the transfer learning baseline
of the main paper. Tab. 3 and Tab. 4 report results for
Dep. → Sem. and Sem. → Dep. settings respectively.

For Sem. → Dep. our method outperforms No Transfer
for all metrics, and indeed this alternative is even worse
than the baseline for Sq. Rel. and RMSE. On the other
hand, for Dep. → Sem. our method achieves better per-
formances in the majority of the classes and for the mIoU,
while No Transfer provides the best pixel accuracy. We as-
cribe this result to No Transfer providing the highest IoU for
the road class, which represents the vast majority of pixels
in an autonomous driving scenario. However this good per-
formance does not translate to other classes such that No
transfer achieves the worst mIoU, even less than the base-
line. These results confirm the importance of learning a
mapping function (e.g., G1→2) between features to trans-
fer representations between tasks.

1.3. Shared Decoder and Separate Encoders for N1

In Sec. 6.2 we highlighted how learning a common
representation for T1 is crucial to learn a transfer function
which generalize across domains. In this additional test we
show that to learn a good shared representation across do-
mains for one task, we need to share both encoders and de-
coders in NA∪B

1 . For this reason we train a different ver-
sion of NA∪B

1 with a shared decoder but two encoders, one
trained only onA and the other only on B. Tab. 5 compares
this architecture to AT/DT for Synthia to Cityscapes in the
Dep. → Sem.scenario. Indeed training a shared encoder
allows the representation to be more closely related result-
ing in better performance.

1.4. Integration with Domain Adaptation

We report here additional details on how we have used
CycleGAN [5] to address domain adaptation.

We train CycleGAN to transform images from Carla (A)



Sem.→ Dep. Dep.→ Sem.

Figure 1: t-SNE [3] plots of deep features computed on A. Pink denotes the features extracted for T1, i.e. EA∪B
1 (xa).

Blue features extracted for T2, i.e. EA
2 (xa). Red the prediction obtained by the feature transfer network G1→2(E

A∪B
1 (xa)).

Therefore, the red points are the transformations of the pink points according to G1→2. With an ideal G1→2 red and blue
points would perfectly overlap, here we can see that unfortunately this is not the case. Nevertheless our transfer function
successfully transform pink features to make them closer to blue ones.
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(c) Carla Cityscapes Baseline 71.87 36.53 3.99 6.66 24.33 22.20 66.06 48.12 7.60 60.22 69.05 37.88 74.61

(c) Carla Cityscapes No Transfer 84.82 33.15 1.00 1.79 6.30 14.26 69.91 40.32 1.84 65.67 73.49 35.69 79.53
Carla Cityscapes AT/DT 76.44 32.24 4.75 5.58 24.49 24.95 68.98 40.49 10.78 69.38 78.19 39.66 76.37

Table 3: Experimental results of Dep.→ Sem. scenario. Best results highlighted in bold.

to Cityscapes (B) and vice-versa. The network is trained
using the original author implementation1 for 200k steps on
random image crops of 400× 400 pixels. We use the same
hyper-parameters settings as proposed in the original paper.

Once trained, we transform the Cityscapes dataset into
the Carla style generating a new CityscapesLikeCarla
dataset which we will call BlikeA domain (see Fig. 2). The
baseline is then obtained by testing NA

2 with the validation
set of BlikeA. To integrate AT/DT with CycleGAN, we
train a NA∪{BlikeA}

1 on both A and BlikeA at step 1 of
AT/DT. Then, at step 4, to infer the predictions for T2 on
B, we employ the validation set of BlikeA as done for the
baseline. To summarize we train the shared source network
on samples obtained from A and BlikeA, then we test all
networks on the test set of BlikeA (i.e., Cityscapes images
transformed to look like those from Carla).

In Fig. 3 we show some qualitative results obtained when

1https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix

combining AT/DT together with the pixel level domain
adaptation obtained through CycleGAN. Comparing the re-
sults in the Sem. → Dep. scenario (first row) with those
obtained in a Dep. → Sem. scenario (second row) we can
see how CycleGAN is very effective when targeting the se-
mantic segmentation tasks, much less effective when target-
ing a depth estimation task. AT/DT, instead, consistently
produce better predictions than the baseline in both the con-
sidered tasks.

1.5. Additional tasks

In Fig. 4 we report additional qualitative results when
using as T1 semantic segmentation and as T2 normal esti-
mation, with Carla as A and Cityscapes as B. The results
confirm the findings of the semantic to depth scenario, with
AT/DT producing clearly better prediction than the base-
line network. We report only qualitative results due to the
lack of annotations to validate normal estimation on the real
Cityscapes data.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


Lower is better Higher is better
A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

(b) Carla Cityscapes Baseline 0.667 13.500 16.875 0.593 0.276 0.566 0.770

(b) Carla Cityscapes No Transfer 0.615 17.578 19.924 0.533 0.284 0.646 0.845
Carla Cityscapes AT/DT 0.394 5.837 13.915 0.435 0.337 0.749 0.899

Table 4: Experimental results of Sem.→ Dep. scenario. Best results highlighted in bold.

Cityscapes CityscapesLikeCarla Carla

Figure 2: Images obtained applying CycleGAN to make Cityscapes samples similar to those of Carla. From left to right:
samples from Cityscapes, corresponding image from CityscapesLikeCarla obtained by CycleGAN, similar samples from
Carla

Shared Encoders mIoU Acc.

7 11.55 56.79
3 23.24 (+11.69) 64.03 (+7,24)

Table 5: Study on Shared Decoder with Non Shared En-
coders for NA∪B

1 . We show a A: Synthia to B: Carla and
Dep. → Sem. scenario. Performance improvement high-
lighted in bold.

2. Details on the training process

Our task networks consist of a ResNet50 as encoder and
a stack of 3 series of bilinear upsampler followed by one
convolution as the decoder. Our ResNet50 use dilated con-
volution with rate 2 and 4 in the last two residual blocks,
similarly to DRN [4]. We trained our NA∪B

1 and NA
2 until

the loss stabilizes with batch size 8 and crop 512x512.
We use Adam [1] as optimizer with a linear decaying

learning rate 10−4 and β1 = 0.9.
Our G1→2 consists in a stack of 6 convolutional layers

with kernel size 3x3 going down to a quarter of the input
resolution and then upsampling back to original resolution.
We train this network for 100k iterations with batch size 1

and random crops of 512× 512 pixels. We use Adam [1] as
optimizer with learning rate 10−5.

3. Details on the evaluation process
We perform all the evaluation at the original image reso-

lution for Cityscapes, Carla and Synthia. Instead, for Kitti,
we consider a central crop with size 320 × 1216 due to the
varying size of images.

Semantic Segmentation We train and evaluate the se-
mantic segmentation task on 11 classes, the 10 defined by
the Carla framework2 plus the additional ‘Sky’ class that we
define as the set of points at infinite depth. To evaluate the
network on Cityscapes we collapse some of the available
classes to make them compatible with Carla: car and bicy-
cle collapse into vehicle and traffic sign and traffic light into
traffic sign. We ignore the other labels in Cityscapes which
do not have a corresponding class in Carla.

Depth We trained and evaluate the depth networks clip-
ping the max predictable depth to 100m and then normal-
izing between 0 and 1. At inference time we scale the pre-
dictions back to the 0m-100m range before computing the
different metrics.

2https://github.com/carla-simulator/carla/
releases/tag/0.8.4

https://github.com/carla-simulator/carla/releases/tag/0.8.4
https://github.com/carla-simulator/carla/releases/tag/0.8.4


BlikeA inputs Baseline CycleGAN AT/DT AT/DT+CycleGAN

Figure 3: Qualitative results on the Cityscapes dataset in a Sem. → Dep. scenario (first row) and Dep. → Sem. sce-
nario (second row). From left to right: BlikeA inputs, predictions obtained by a transfer learning baseline, by a do-
main adaptation baseline (CycleGAN[5]), by our framework (AT/DT) and by our framework aided by domain adaptation
(AT/DT+CycleGAN).

RGB input Baseline AT/DT

Figure 4: Qualitative results on Cityscapes dataset in a Sem.→ Norm. scenario. From left to right: RGB input, prediction
obtained by a transfer learning baseline and by our framework (AT/DT).
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