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1. Backpropagation of mAPQ

In this section, we expand upon Section 3.2 of our
submission to further explain the backpropagation process
for a batch of image descriptors D = [d1, . . . , dB ] and
groundtruth Y = [Y1, . . . , YB ]. Additionally, we will
demonstrate the differentiability of the loss function L. We
separate the algorithm in three stages, accordingly to Fig. 3
of our submission.

Stage 1. This stage consists only of a forward pass of
our network in evaluation mode, i.e. no backpropagation is
needed. For each image Ii of the batch, its descriptor di is
computed as di = fΘ(Ii) and the matrix D is determined
by the stacking of these descriptors by the rows.

Stage 2. In this stage, we compute the loss ` = L(D,Y )
given by:

` = 1− 1

B

B∑
q=1

M∑
m=1

P̂m(d>q D,Yq) ∆r̂m(d>q D,Yq). (1)

Since, at this stage, the backpropagation method stops at
the descriptors level, our goal is to compute the derivatives
∂`
∂D =

(
∂`
∂di

)
1≤i≤B

. We introduce some mathematical no-

tations to ease the readability of this section. Let Sq = d>q D

in [−1, 1]B denote the similarities of the batch images with
a query Iq in the batch, δqm = δ(Sq,m) in [0, 1]B denote the
soft-assignment of Sq to the m-th bin and ξqm =

∑m
k=1 δ

q
k

in RB+ denotes the sum of all the soft-assignments of Sq

up until the m-th bin. Moreover, P̂ qm = P̂m(Sq, Yq) and
∆r̂qm = ∆r̂m(Sq, Yq) denote the precision and incremental
recall at binm of Sq , respectively. These notations allow us
to rewrite P̂ qm and ∆r̂qm as:

P̂ qm =
(ξqm)>Yq
(ξqm)>1

, (2)

∆r̂qm =
(δqm)>Yq
Nq

. (3)

We now derivate Eq. (1) w.r.t. di and, by applying the
chain-rule, we obtain:

∂`

∂di
= − 1

B

B∑
q=1

M∑
m=1

(
∂P̂ qm
∂di

∆r̂qm + P̂ qm
∂∆r̂qm
∂di

)
(4)

= − 1

B

B∑
q=1

M∑
m=1

(
∆r̂qm

∂P̂ qm
∂ξqm

∂ξqm
∂Sq

+ P̂ qm
∂∆r̂qm
∂δqm

∂δqm
∂Sq

)
∂Sq

∂di
.

(5)

We can separately compute each of the terms of Eq. (5).
The derivatives ∂δqm

∂Sq and ∂ξqm
∂Sq in RB×B are defined and can

be backpropagated thanks to the definition of the triangular
kernel:

(
∂ξqm
∂Sq

)
ij

=

(
m∑
k=1

∂δqk
∂Sq

)
ij

, (6)

(
∂δqm
∂Sq

)
ij

= − sign(Sqi − bm)

∆
11 [|Sqi − bm| ≤ ∆] 11[i = j].

(7)

Next, the missing derivatives, ∂P̂
q
m

∂ξqm
and ∂∆r̂qm

∂δqm
in R1×B and

∂Sq

∂di
in RB×D can be expressed as follows:

∂P̂ qm
∂ξqm

=
1

((ξqm)>1)2
(ξqm)>

(
1Y >q − Yq1

>
)
, (8)

∂∆r̂qm
∂δqk

=
1

Nq
Y >q , (9)

(
∂Sq

∂di

)
j

= d>j 11[i = q] + d>q 11[i = j]. (10)

And finally, putting together Eqs. (6), (7), (8), (9), (10)
in Eq. (5) proves that L is differentiable and its derivative
provides useful information for backpropagation.
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Stage 3. In the last stage, the goal is to compute ∂`
∂Θ . For

each i in [1, . . . , B], di = fΘ(Ii) and ∂di
∂Θ = ∂

∂ΘfΘ(Ii) are
computed according to the network backpropagation algo-
rithm, and ∂`

∂di
is obtained in stage 2. Therefore, the chain-

rule give us:

∂`

∂Θ
=

B∑
i=1

∂`

∂di

∂di
∂Θ

. (11)

2. APQ is a good approximation of the AP

In this section, we illustrate the quality of the approxi-
mation given by APQ to the true AP. In order to assess this
approximation, we scatter plot the true AP and APQ for all
queries of theRParis dataset in Fig. 1. We observe a corre-
lation of ∼ 0.98 between them.

Figure 1. Scatter plot of the true AP versus APQ forRParis [2].

3. Hyperparameters

In this section, we present additional information regard-
ing the Table 1 in our original submission. In Table 1 above
we give an explicit list of the hyperparameters used by each
method. As it can be seen, our approach requires much
fewer hyperparameters than [1, 3]. This means much less
effort is required during training since there are less vari-
ables to tune and to optimize using costly procedures such
as grid-searches and cross-validation.

Specifically, in order to use hard negative mining (HNM)
as in [1], one would need to find correct values for at least 6
hyperparameters: the number N of images in mining pool;
the n for when selecting the top-n hardest triplets for min-
ing; the number k of times before updating good candidates;
the number bs of triplets before an update; the margin m of
the loss; the batch size b. Likewise, using the method of [3]
requires determining values for at least 7 hyperparameters:
the margin τ of the loss, the size k∗ of the pool of candidate

Table 1. Hyper-parameters for different methods

Method Hyper-parameters (besides optimizer) Total

R-MAC (TL) [1] N , bs, k, b, m, n 6
GeM (CL) [3] nn, k∗, ti, ts, nh, b, τ , ... 7+
GeM (AP) [ours] nb, b 2

Abbreviations: N , images in mining pool; n, top-n hardest triplets for
hard negative mining (HNM); k, number of times before updating good
candidates; bs, number of triplets before an update; m, τ , margin of the
loss; b, batch size; k∗, pool of candidate positives; ti, overlap threshold;
ts, scale-change threshold; nh, number of times hard negatives are re-
mined; nn, number of negative images in the tuple; nb, number of bins.

positives, the overlap threshold ti, the scale-change thresh-
old ts, the number nh of times hard negatives are re-mined,
the number nn of negative images in the tuple, and the batch
size b. Choosing a wrong value for any of these parameters
can significantly impact training and lead to poorer results.

In contrast, our loss only requires 2 hyper-parameters
which have safe defaults that are not very sensitive to
changes (please refer to Figures 4 and 5 in our submission).
Those are the number of bins nb, and the batch size b.

4. Multistaged backpropagation algorithm
In this section, we provide in Algorithm 1 a pseudocode

for our multistaged backpropagation, as presented in Sec-
tion 3.3 of our submission. The code is split similarly to
Figure 2 of our submission in order to make it easier to fol-
low.

Algorithm 1: Efficient training for any batch size.
Input: Training batch B = {(I1, y1), . . . , (IB , yB)}
begin

# Stage 1
for i in 1..B; do

compute di ← fΘ(Ii)

# Stage 2
create D ← [d1, . . . , dB ] ∈ RB×C

create Y ∈ {0, 1}B×B such that Yij = 11[yi = yj ]

`← L (D,Y ) # compute the loss
compute ∂`

∂D
∈ RB×C

# Stage 3
init ∂`

∂Θ
← 0

for i in 1..B; do
compute di ← fΘ(Ii)

compute ∂di
∂Θ
← ∂

∂Θ
fΘ(Ii)

accumulate ∂`
∂Θ
← ∂`

∂Θ
+ ∂di

∂Θ

(
∂`
∂D

)
i

# w/chain-rule
update Θ← Θ− γ ∂`

∂Θ
# optimizer step

end



5. Qualitative results
In this section, we provide additional examples of

queries and their respective top-10 result images as ob-
tained by our retrieval model (referred as “GeM (AP)” in
Table 1 of our submission) in the RParis (Table 2) and
ROxford (Table ??) datasets [2]. In these tables, each re-
trieved image is marked with a colored border indicating
whether they belong to the positive or negative groups of
the medium benchmark associated with these datasets (see
Section 4.1 of our submission).

Failure cases. At the bottom of these tables, we also list
the three worst performing queries for each dataset. Those
queries serve as demonstrations of failure cases that can be
used to indicate in which situations our models could be
improved. As it can be seen, correctly retrieving images be-
longing to these queries requires a significant level of atten-
tion to details, such as subtle differences in adornment stat-
ues (see last rows of Tables 2 and ??) or similarly looking
building façades seen from a short distance (see last rows of
Table ??).

Hard benchmark. We also include two other tables (Ta-
bles ?? and ??) with exactly the same queries as Tables 2
and ??, but showing their evaluation under the hard bench-
mark of RParis and ROxford. In this protocol, we remove
easy-to-retrieve images, focusing instead on difficult cases.
While this results in a higher amount of mistakes, our model
still manages to correctly retrieve images with varying light-
ing conditions (see Table ??) and high levels of occlusion
(see 2nd row of Table ?? and 5th row of Table ??).
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Table 2. Top-10 results for 5 random queries and 3 worst-performing queries inRParis [2].

Query Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7 Top-8 Top-9 Top-10

Random queries

Top failure cases


