
A. Supplementary material
We provide further results on CIFAR100 in order to show

the importance of all components of our proposed CNMMs.
Moreover, we provide additional qualitative results of se-
mantic segmentation on the CityScapes dataset.

A.1. Ablative study of CNMM

Using sampling during training. During learning, CN-
MMs generate a set of samples π̃stt−1 using Eq. (7). In
contrast, during inference we use the expectations πstt−1 in-
stead. In order to evaluate the importance of sampling dur-
ing learning, we have optimized a CNMM by using the
aforementioned expectations instead of samples. Figure 9
shows the results obtained by the model using this approach,
denoted as “Training with expectations”. We observe that,
compared to the CNMM using sampling, the accuracy de-
creases faster when different pruning ratios are applied. We
attribute this to the fact that our sampling procedure can
be regarded as a continuous-relaxation of dropout, where
a subset of functions fstt−1(ht−1t−1) are randomly removed
when computing the output tensor hstt−1. As a consequence,
the learned model is more robust to the pruning process
where some of the convolutional blocks are removed during
inference. This is not the case when deterministic expecta-
tions are used in Eq. (7) rather than samples.
Comparison with a deterministic model. We compare
the performance of our CNMM with a deterministic variant
using the same architecture. Concretely, in Eq. (7) we ig-
nore samples π̃stt−1 and simply sum the feature maps h̃stt−1
and h̃t−1t−1. Note that the resulting model is analogous to
a MSDNet [17] using early-exit classifiers. We report the
results in Figure 9, denoted as “Deterministic with early-
exits”. We observe that our CNMM model obtains better
performance than its deterministic counterpart. Moreover,
same as MSDNets, accelerating the deterministic model is
only possible by using the early-exits. In contrast, the com-
plementary pruning algorithm available in CNMM allows
for a finer granularity to control the computational cost.
Expectation approximation during inference. In or-
der to validate our approximation of p(y|X; θ) =
Ep(HT |X)[p(y|HT ; θ)] during inference, we evaluate the
performance obtained by using a Monte-Carlo procedure
for the same purpose. In particular, we generate N samples
from the output distribution p(HT |H0). Then, we com-
pute the class probabilities p(y|HT ; θ) for each sample and
average them. Table 1 shows the results obtained by vary-
ing the number of samples. We observe that our approach
offers a similar performance as the Monte-Carlo approxi-
mation using N = 5. For a higher number of samples, we
observe slight improvements in the results. However, note
that a Monte-Carlo approximation is very inefficient since
it requires N independent evaluations of the model.

To
p

-1
 A

cc
u

ra
c

y

Figure 9. FLOPs vs. performance curves for our model (CNMM),
and the variants described in Section A.1. As in Figure 7 of the
main paper, the curves are obtained by using the optimal combi-
nation of early-exits and pruning when possible. In this manner,
results for CNMM represent upper-envelope of all the different
curves depicted in Fig. 6 of the main paper.

In particular, the last row in Table 1 is 30 times more
costly to obtain than the two first rows. The minimal gain
obtained with more samples could probably be more effi-
ciently obtained by using a larger model.

Approximation FLOPs Top-1 Accuracy
Expectation (used) 93M 74.4

Sampling N=1 93M 71.2
Sampling N=5 463M 74.4

Sampling N=15 1390M 74.5
Sampling N=30 2780M 74.6

Table 1. Comparison of the results obtained in CIFAR100 by ap-
proximating the CNMM output using our approach or a Monte-
Carlo procedure with different number of samples N .

A.2. Additional Qualitative Results

In Figure 10 we provide additional qualitative results for
semantic segmentation obtained by a single trained CNMM
model, using various opertating points with different num-
ber of FLOPs during inference.

Image Ground-Truth FLOPs: 0.7B FLOPs: 0.9B FLOPs: 2.6BFLOPs: 1.3B

Figure 10. Pixel-level predictions for a single CNMM adapting the number of FLOPs required during inference.

