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In this supplementary material we include; (1) Section 1.1: Proof of Lemma 1, (2) Section 1.2: Proof of relation between
constrained optimization problem in (8) and its Lagrangian formulation in (9), (3) Section 1.3: Proof of Theorem 2, (4)
Section 1.4: Proof of Theorem 3, (5) Section 2: Empirical moments based solution to linear encoder, (6) Section 3: A
detailed description of the Kernel-ARL extension, including derivation of its solution, (7) Section 3.2: Proof of Lemma 4,
(8) Section 4: Additional analysis of experimental results, and (9) Section 5: Discussion on computational complexity of the
Spectral-ARL solutions.

1. Proofs
We recall that for any square matrix M, its trace, denoted by Tr[M] is defined as the sum of all its diagonal elements.

The Frobenius norm of M can be obtained as ‖M‖2F= Tr(MMT ). This allows us to express the MSE of a centered random
vector in terms of its covariance matrix:

E
{∥∥y − by

∥∥2} = Tr
[
E
{
(y − by)(y − by)

T
}]

= Tr[Cy].

Let A and B be two arbitrary matrices with the same dimension. Further, assume that the subspace R(A) is orthogonal to
R(B). Then, using orthogonal decomposition (i.e., Pythagoras theorem), we have∥∥A + B

∥∥2
F
=
∥∥A∥∥2

F
+
∥∥B∥∥2

F
.

We provide the statements of the lemmas and theorems for sake of convenience, along with their proofs.

1.1. Proof of Lemma 1

Lemma 1. Let x and t be two random vectors with E[x] = 0, E[t] = b, and Cx � 0. Consider a linear regressor,
t̂ = Wz + b, where W ∈ Rm×r is the parameter matrix, and z ∈ Rr is an encoded version of x for a given ΘE:
x 7→ z = ΘEx, ΘE ∈ Rr×d. The minimum MSE that can be achieved by designing W is given as

min
W

E[‖t− t̂‖2] = Tr
[
Ct

]
−
∥∥PMQ−Tx Cxt

∥∥2
F

where M = QxΘ
T
E ∈ Rd×r, and Qx ∈ Rd×d is a Cholesky factor of Cx as shown in (1).



Proof. Direct calculations yield:

Jt = E
{∥∥t− t̂

∥∥2}
= Tr

[
E
{
(t− b−Wz)(t− b−Wz)T

}]
= Tr

[
E
{
(t− b)(t− b)T + (WΘEx)(WΘEx)T − (t− b)(WΘEx)T − (WΘEx)(t− b)T

}]
= Tr

[
Ct + (WΘE)Cx(WΘE)

T −Ctx(WΘE)
T − (WΘE)C

T
tx

]
= Tr

[
Ct + (WΘEQT

x )(WΘEQT
x )
T −Ctx(WΘE)

T − (WΘE)C
T
tx

]
= Tr

[
(WΘEQT

x −CtxQ
−1
x )(WΘEQT

x −CtxQ
−1
x )T + Ct − (CtxQ

−1
x )(CtxQ

−1
x )T

]
=

∥∥QxΘ
T
EWT −Q−Tx Cxy

∥∥2
F
−
∥∥Q−Tx Cxt

∥∥2
F
+Tr[Ct]

Hence, the minimizer of Jt is obtained by minimizing the first term in the last equation, which is a standard least square error
problem. Let M = QxΘ

T
E , then the minimizer is given by

WT = M†Q−Tx Cxt

Using the orthogonal decomposition∥∥Q−Tx Cxt

∥∥2
F
=
∥∥PMQ−Tx Cxt

∥∥2
F
+
∥∥PM⊥Q−Tx Cxt

∥∥2
F

and ∥∥QxΘ
T
EWT −Q−Tx Cxt

∥∥2
F

=
∥∥MWT − PMQ−Tx Cxt

∥∥2
F
+
∥∥PM⊥Q−Tx Cxt

∥∥2
F

=
∥∥MM†︸ ︷︷ ︸

PM

Q−Tx Cxt − PMQ−Tx Cxt

∥∥2
F
+
∥∥PM⊥Q−Tx Cxt

∥∥2
F

=
∥∥PM⊥Q−Tx Cxt

∥∥2
F
,

we obtain the minimum value as
Tr
[
Ct

]
−
∥∥PMQ−Tx Cxt

∥∥2
F

1.2. Relation Between Constrained Optimization Problem in (8) and its Lagrangian Formulation in (9)

Consider the optimization problem in (8)

Gα = argmin
G

Jy(G), s.t. Js(G) ≥ α. (A)

and the optimization problem in (9)
Gλ = argmin

G
Jλ(G) (B)

where
Jλ(G) = (1− λ)Jy(G)− λJs(G), λ ∈ [0, 1]

Claim 1. For each λ ∈ [0, 1), solution Gλ of (B) is also a solution of (A) with

α = Js(Gλ). (C)

Proof. Let us consider (A) while assuming that (B) is satisfied. For each λ and Gλ, let α be given as in (C). For an arbitrary
G satisfying Js(G) ≥ α, we have

(1− λ)Jy(Gλ)− λα = (1− λ)Jy(Gλ)− λJs(Gλ)

≤ (1− λ)Jy(G)− λJs(G),

where the second step is from the assumption that B is satisfied. Consequently, we have,

(1− λ)
[
Jy(G)− Jy(Gλ)

]
≥ λ

[
Js(G)− α

]
≥ 0.

Since Js(G) ≥ α, this implies that Jy(G) ≥ Jy(Gλ) and consequently Gλ is a possible minimizer of problem (A).



1.3. Proof of Theorem 2

Theorem 2. As a function of GE ∈ Rd×r, the objective function in equation (9) is neither convex nor differentiable.

Proof. Recall that PG is equal to GE(G
T
EGE)

†GT
E . Therefore, due to the involvement of the pseudo inverse, (9) is not

differentiable (see [2]).
For non-convexity consider the theorem that f(GE) is convex in GE ∈ Rd×r if and only if h(t) = f(tG1 + G2) is

convex in t ∈ R for any constants G1, G2 ∈ Rd×r (see [1]).
In order to use the above theorem, consider rank one matrices

G1 =



1 0 . . . 0

0 0 . . . 0

0 0 . . . 0

...
...

. . .

0 0 . . . 0


and G2 =



1 0 . . . 0

1 0 . . . 0

0 0 . . . 0

...
...

. . .

0 0 . . . 0


.

Define GE = (tG1 + G2). Then

PG(t) = GE(G
T
EGE)

†GT
E =

1

(t+ 1)2 + 1



(t+ 1)2 (t+ 1) 0 . . . 0

(t+ 1) 1 0 . . . 0

0 0 0 . . . 0

...
...

...
. . .

0 0 0 . . . 0


.

Using basic properties of trace we get,

(1− λ)Jy(GE)− λJs(GE) = Tr
[
PG(t)B

]
,

where the matrix B is given in (14) and we used Lemma 1. Now, represent B as

B =


b11 b12 . . . b1d

b12 b22 . . . b2d
...

...
. . .

b1d b2d . . . bdd

 .

Thus,

Tr
[
PG(t)B

]
= b11 +

2b12(t+ 1) + b22 − b11
(t+ 1)2 + 1

.

It can be shown that the above function of t is convex only if b12 = 0 and b11 = b22. On the other hand, if these two
conditions hold, it can be similarly shown that (1− λ)Jy(GE)− λJs(GE) is non-convex by considering a different pair of
matrices G1 and G2. This implies that (1− λ)Jy(GE)− λJs(GE) is not convex.

1.4. Proof of Theorem 3

Theorem 3. Assume that the number of negative eigenvalues (β) of B in (13) is j. Denote γ = min{r, j}. Then, the
minimum value in (10) is given as,

β1 + β2 + · · ·+ βγ (D)

where β1 ≤ β2 ≤ . . . ≤ βγ < 0 are the γ least eigenvalues of B. And the minimum can be attained by GE = V, where the
columns of V are eigenvectors corresponding to all the γ negative eigenvalues of B.



Proof. Consider the inner optimization problem of (10) in (11). Using the trace optimization problems and their solutions
in [3], we get

min
GT

EGE=Ii
Jλ(GE) = min

GT
EGE=Ii

Tr
[
GT
EBGE

]
= β1 + β2 + · · ·+ βi,

where β1, β2, . . . , βi are i smallest eigenvalues of B and minimum value can be achieved by the matrix V whose columns
are corresponding eigenvectors. If the number of negative eigenvalues of B is less than r, then the optimum i in (10) is j,
otherwise the optimum i is r.

2. Empirical Moments Based Solution to Linear Encoder
In many practical scenarios, we only have access to data samples but not to the true mean vectors and covariance matrices.

Therefore, the solution in Section 3.2 might not be feasible in such as case. In this Section, we provide an approach to solve
the optimization problem in Section 3.2 which relies on empirical moments and is valid even if the covariance matrix Cx is
not full-rank.

Firstly, for a given ΘE , we find
Jy = min

Wy,by

MSE (ŷ − y).

Note that the above optimization problem can be separated over Wy , by . Therefore, for a given Wy , we first minimize over
by:

min
by

E
{∥∥WyΘEx + by − y

∥∥2}
= min

by

1

n

n∑
k=1

∥∥WyΘExk + by − yk
∥∥2

=
1

n

n∑
k=1

∥∥WyΘExk + c− yk
∥∥2

where we used empirical expectation in the second stage and the minimizer c is

c =
1

n

n∑
k=1

(
yk −WyΘExk

)
=

1

n

n∑
k=1

yk −WyΘE
1

n

n∑
k=1

xk

= E
{
y
}
−WyΘE E

{
x
}

(E)

Let all the columns of matrix C be equal to c. We now have,

Jy = min
Wy,by

MSE (ŷ − y)

= min
Wy

1

n

∥∥WyΘEX + C−Y
∥∥2
F

= min
Wy

1

n

∥∥WyΘEX̃− Ỹ
∥∥2
F

= min
Wy

1

n

∥∥X̃TΘT
EWT

y − ỸT
∥∥2
F

= min
Wy

1

n

∥∥MWT
y − PMỸT

∥∥2
F
+

1

n

∥∥PM⊥ỸT
∥∥2
F

=
1

n

∥∥MM†︸ ︷︷ ︸
PM

PMỸT − PMỸT
∥∥2
F
+

1

n

∥∥PM⊥ỸT
∥∥2
F

=
1

n

∥∥PM⊥ỸT
∥∥2
F

=
1

n

∥∥ỸT
∥∥2
F
− 1

n

∥∥PMỸT
∥∥2
F



Algorithm 1 Spectral Adversarial Representation Learning

1: Input: data X, target labels Y, sensitive labels S, tolerable leakage αmin ≤ αtol ≤ αmax, ε
2: Output: linear encoder parameters ΘE

3: Lx ← orthonormalize basis of X̃T

4: Initiate λ = 1/2, λmin = 0 and λmax = 1
5: do
6: Calculate B in (G)
7: GE ← eigenvectors of negative eigenvalues of B
8: ΘE ← GT

ELTx (X̃)†

9: Calculate α using (F)
10: if α < (αtol − ε) then λmin = λ and λ← (λ+ λmax)/2
11: else if α > (αtol + ε) then λmax = λ and λ← (λ+ λmin)/2
12: end if
13: while

∣∣α− αtol

∣∣ ≥ ε
where in the third step we used (E), M = X̃TΘT

E and the fifth step is due to orthogonal decomposition. Using the same
approach, we get

Js =
1

n

∥∥S̃T∥∥2
F
− 1

n

∥∥PMS̃T
∥∥2
F

(F)

Now, assume that the columns of Lx are orthogonal basis for the column space of X̃T . Therefore, for any M, there exist
a GE such that LxGE = M. In general, there is no bijection between ΘE and GE in the equality X̃TΘT

E = LxGE .

But, there is a bijection between G and ΘE restricted to ΘE’s in which R(ΘT
E) ⊆ N (X̃T )

⊥
. This restricted bijection is

sufficient to be considered, since for any ΘT
E ∈ N (X̃T ) we have M = 0. Once G is determined, ΘT

E can be obtained as,

ΘT
E = (X̃T )†LxGE + Θ0, Θ0 ⊆ N (X̃T ).

However, since ∥∥ΘE

∥∥2
F
=
∥∥ΘT

E

∥∥2
F
=
∥∥(X̃T )†LxGE

∥∥2
F
+
∥∥Θ0

∥∥2
F
,

choosing Θ0 = 0 results in minimum
∥∥ΘE

∥∥
F

, which is favorable in terms of robustness to noise. By choosing Θ0 = 0,
determining the encoder ΘE would be equivalent to determining GE . Similar to (7), we have PM = LxPGL

T
x . If we assume

that the rank of PG is i, Jλ(GE) in (12) can be expressed as,

Jλ(GE) = λ
∥∥LxGEGT

ELTx S̃T
∥∥2
F
− (1− λ)

∥∥LxGEGT
ELTx ỸT

∥∥2
F

where GEGT
E = PG for some orthogonal matrix GE ∈ Rd×i. This resembles the optimization problem in (10) and therefore

it has the same solution as Theorem 3 with modified B given by

B = LTx

(
λS̃T S̃− (1− λ)ỸT Ỹ

)
Lx. (G)

Once GE is determined, ΘE can be obtained as GT
ELTx (X̃)†. Algorithm 1 summarizes our entire solution for the case if one

wishes to consider the constrained optimization problem in (8) instead of Lagrangian version of it in (9).

3. Non-linear Extension Through Kernelization
We assume that x is non-linearly mapped to φx(x) as illustrated in Figure 1. From the representer theorem (see[4]), we

note that ΘE can be expressed as ΘE = ΛΦ̃T
x . Consequently the embedded representation z can be computed as,

z = ΘEφx(x) = ΛΦ̃T
xφx(x) = ΛDT [kx(x1,x), · · · , kx(xn,x)]T



x φ(·) φ(x) E z

T ŷ

A ŝ

Figure 1: Kernelized Adversarial Representation Learning consists of four entities, a kernel φx(·), an encoder E that
obtains a compact representation z of the mapped input data φx(x), a predictor T that predicts a desired target attribute y
and an adversary that seeks to extract a sensitive attribute s, both from the embedding z.

3.1. Learning

First, for a given fixed ΘE , we find
Jy = min

Wy,by

MSE (ŷ − y).

Note that the above optimization problem can be separated over Wy , by . Therefore, for a given Wy , we first minimize over
by:

min
by

E
{∥∥WyΘEφx(x) + by − y

∥∥2}
= min

by

1

n

n∑
k=1

∥∥WyΘEφx(xk) + by − yk
∥∥2

=
1

n

n∑
k=1

∥∥WyΘEφx(xk) + c− yk
∥∥2

where the minimizer c is,

c =
1

n

n∑
k=1

(
yk −WyΘEφx(xk)

)
=

1

n

n∑
k=1

yk −WyΘE
1

n

n∑
k=1

φx(xk)

= E
{
y
}
−WyΘE E

{
φx(x)

}
. (H)



Let all the columns of C be equal to c. Therefore we now have,

min
Wy,by

MSE (ŷ − y)

= min
Wy

1

n

∥∥WyΘEΦx + C−Y
∥∥2
F

= min
Wy

1

n

∥∥WyΘEΦ̃x − Ỹ
∥∥2
F

= min
Wy

1

n

∥∥Φ̃T
xΘT

EWT
y − ỸT

∥∥2
F

= min
Wy

1

n

∥∥MWT
y − PMỸT

∥∥2
F
+

1

n

∥∥PM⊥ỸT
∥∥2
F

=
1

n

∥∥MM†︸ ︷︷ ︸
PM

PMỸT − PMỸT
∥∥2
F
+

1

n

∥∥PM⊥ỸT
∥∥2
F

=
1

n

∥∥PM⊥ỸT
∥∥2
F

=
1

n

∥∥ỸT
∥∥2
F
− 1

n

∥∥PMỸT
∥∥2
F

(I)

where the third step is due to (H), M = Φ̃T
xΘT

E and the fifth step is the orthogonal decomposition w.r.t. M. Using the same
approach, we get

Js =
1

n

∥∥S̃T∥∥2
F
− 1

n

∥∥PMS̃T
∥∥2
F

(J)

Finding optimal ΘE is equivalent to finding optimal Λ (since ΘE = ΛΦ̃T
x ) where we would have M = Φ̃T

x Φ̃xΛ
T =

K̃xΛ
T . Now, assume that the columns of Lx are orthogonal basis for the column space of K̃x. As a result, for any M, there

exist GE such that LxGE = M. In general, there is no bijection between Λ and GE in the equality K̃xΛ
T = LxGE . But,

there is a bijection between GE and Λ restricted to Λ’s in whichR(ΛT ) ⊆ N (K̃x)
⊥

. This restricted bijection is sufficient,
since for any ΛT ∈ N (K̃x) we have M = 0. Once GE is determined, ΛT can be obtained as,

ΛT = (K̃x)
†LxGE + Λ0, Λ0 ⊆ N (K̃x)

However, since ∥∥Λ∥∥2
F
=
∥∥ΛT

∥∥2
F
=
∥∥(K̃x)

†LxGE

∥∥2
F
+
∥∥Λ0

∥∥2
F
,

choosing Λ0 = 0 results in minimum
∥∥Λ∥∥

F
, which is favorable in terms of robustness to the noise. Similar to (7), we have

PM = LxPGL
T
x . If we assume that the rank of PG is i, Jλ(GE) in (12) can be expressed as,

Jλ(GE) = λ
∥∥LxGEGT

ELTx S̃T
∥∥2
F
− (1− λ)

∥∥LxGEGT
ELTx ỸT

∥∥2
F

where PG = GEGT
E for some orthogonal matrix GE ∈ Rd×i. This resembles the optimization problem in (10) and therefore

have the same solution as Theorem 3 with modified B as,

B = LTx

(
λS̃T S̃− (1− λ)ỸT Ỹ

)
Lx (K)

Once GE is determined, Λ can be computed as GT
ELTx (K̃

T
x )
†. Algorithm 1 summarizes our entire solution (replacing X̃

by K̃T
x in steps 3 and 8) if one wishes to consider the constrained optimization problem in (8) instead of unconstrained

Lagrangian version in (9). It is worth of mentioning that the objective function Jλ(GE) is neither convex nor differentiable.
The proof is exactly the same as Theorem 3.

3.2. Proof of Lemma 4

Lemma 4. Let the columns of Lx be the orthonormal basis for K̃x (in linear case K̃x = X̃T X̃). Further, assume that the
columns of Vs are the singular vectors corresponding to zero singular values of S̃Lx and the columns of Vy are the singular



vectors corresponding to non-zero singular values of ỸLx. Then, the MSE for the adversary and the target are bounded on
both sides i.e., αmin ≤ Js ≤ αmax and γmin ≤ Jy ≤ γmax:

γmin =
1

n

∥∥ỸT
∥∥2
F
− 1

n
‖ỸLx‖2F

γmax =
1

n

∥∥ỸT
∥∥2
F
− 1

n

∥∥ỸLxVs

∥∥2
F

αmin =
1

n

∥∥S̃T∥∥2
F
− 1

n

∥∥S̃LxVy

∥∥2
F

αmax =
1

n

∥∥S̃T∥∥2
F

Proof. First, let us ignore the objective corresponding to leakage of the sensitive attribute in (8) or equivalently set λ = 0 in
equation (9). In this scenario, Jy achieves its minimum possible value (denoted by γmin) as,

γmin =
1

n

∥∥ỸT
∥∥2
F
− 1

n
max
ΘE

∥∥PMỸT
∥∥2
F

=
1

n

∥∥ỸT
∥∥2
F
− 1

n
max
GE

∥∥LxPGLTx ỸT
∥∥2
F

=
1

n

∥∥ỸT
∥∥2
F
− 1

n
max
i

{
max

GT
EGE=Ii

Tr
[
GT
ELTx ỸT ỸLxGE

]}
=

1

n

∥∥ỸT
∥∥2
F
− 1

n
Tr
[
VT
y LTx ỸT ỸLxVy

]
=

1

n

∥∥ỸT
∥∥2
F
− 1

n

∑
k

σ2
k

=
1

n

∥∥ỸT
∥∥2
F
− 1

n

∥∥ỸLx
∥∥2
F

(L)

where the fourth step is borrowed from trace optimization problems studied in [3] and σk’s are the singular values of ỸLx.
Now, we show how to reduce the amount of leakage without degrading the performance of the target task. For this purpose,
assume that columns of matrix GE is the concatenation of the columns of Vy together with at least one singular vector
corresponding to a zero singular value of ỸLx. Since Vy ⊆ G, therefore ‖LxPVyLTxU‖2F≤ ‖LxPGLTxU‖2F for any arbitrary
matrix U. As a result, Js(GE) ≥ Js(Vy). Reducing Vy by excluding all singular vectors associated with zero singular
values form Jy does not change γmin (step five in (L)), but will increase Js. As a result, αmin in the constrained optimization
problem (8) which is associated to the maximum leakage of sensitive attributes is,

αmin =
1

n

∥∥S̃T∥∥2
F
− 1

n

∥∥LxPVyLTx S̃T
∥∥2
F

=
1

n

∥∥S̃T∥∥2
F
− 1

n
Tr
[
VT
y LTx S̃T S̃LxVy

]
=

1

n

∥∥S̃T∥∥2
F
− 1

n

∥∥S̃LxVy

∥∥2
F
.

Now, consider the situation where we only seek to prevent leakage of sensitive attributes i.e., the objective of optimization
problem in (8) is ignored or equivalently setting λ = 1 in equation (9). In this case, αmax in the constrained optimization
problem (8) which is associated to the minimum leakage of sensitive attributes is,

αmax =
1

n

∥∥S̃T∥∥2
F

which can be achieved via trivial choice of Vs = 0. However, we let the columns of Vs be the singular vectors corresponding
to all zero singular values of S̃Lx to maximize

∥∥PMỸT
∥∥
F

and consequently minimize Jy . As a result, the maximum Jy is,

γmax =
1

n

∥∥ỸT
∥∥2
F
− 1

n

∥∥ỸLxVs

∥∥2
F
.
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(b) CIFAR-100: Adversary Bounds

4. Numerical Experiments
For the adult dataset, the linear encoder maps the 14 input features to just one dimension. The weights assigned to each

feature is shown in Figure 2a. Notice that the encoder assigns almost zero weight to the gender feature in order to be fair with
respect to the gender attribute.

Figure 2b shows the mean squared error (MSE) of the adversary for the CIFAR-100 experiment as a function of the
Lagrange multiplier λ. The plot illustrates, (a) the lower and upper bounds αmin and αmax respectively calculated on the
training dataset, (b) achievable adversary MSE computed on the training set αtrain, and finally (c) achievable adversary MSE
computed on the test set αtest. Observe that on the training dataset all values of α ∈ [αmin, αmax] are reachable as we sweep
through λ ∈ [0, 1]. This is however not the case on the test set since the bounds are computed using empirical moments as
opposed to the true covariance matrices.

5. Computational Complexity
Solving the optimization problem runs in O(d3) since we need to eigendecompose the d × d matrix B. Both Cholesky

factorization Cx = QT
xQx and obtaining Q−1x require O(d3). Obtaining the mapping ΘE from G takes O(d3) again.

Calculating covariance matrices Cx, Cyx and Csx can be done in O(d2n), O(p2n) and O(q2d) respectively. In Kernel-
SARL, eigendecomposition of B requires O(n3). However, for scalability i.e., large n (e.g., CIFAR-100), the Nyström
method (i.e., sampling the data) can be adopted.
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