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In this supplementary document, we present some of the
details which couldn’t be fit in the main paper. We provide
details on how the datasets are sampled (Section 1) from
Flickr30k Entities [9], Visual Genome [5] and their distri-
butions (Section 2). We also provide (i) proposal recall of
baseline method (Section 3) (ii) image blind and language
blind ablation of our model (Section 4).

1. Dataset Construction
We re-use the notation introduced in Table 1 of the main

paper. We use Flickr30k for Case 0, 1 and Visual Genome
for Case 2, 3 (reasons detailed in 1.4).

1.1. Case 0: Q /∈W

This is sampled from Flickr30k Entities [9].
In Flickr30k Entities each image has 5 associated sen-

tences. The noun phrases (query-phrases) in each sentence
are annotated with the bounding box information. Note that
query-phrases in different sentences could refer to the same
bounding box. Finally, each bounding box has an associated
“entity” which we exploit in Case1.

For Case0, we consider the last word in the query phrase
and use the lemmatized representation obtained from spacy
[3]. This means that words like “car” and “cars” would be
considered the same. However, this doesn’t consider syn-
onyms so “automobile” and “cars” are considered different.

We sort the lemmatized words in descending order of
frequency and consider the topI = 1000 words to be always
seen. This is reasonable for words like “woman”, “sky” etc.

Of the remaining words we do a 70:30 split and consider
the first part to be in the include (seen) list (S) and the rest
to be in the exclude (unseen) list (U ). Note that even though
S,U are disjoint they could share few similar words. The
resulting include list contains 7k words and the exclude list
contains 3k words.

For the test set we use only those images whose annota-
tions have query word Q ∈ U . For the training set we con-
sider the remaining image and remove annotations which
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have query word Q ∈ U . We also ensure that there is no
overlap between the train and test images. The resulting
split is called Flickr-Split-0.

The main motivation behind Case0 Novel Words (NW)
is to see how well our model can perform without explicitly
having seen the word during training.

1.2. Case 1: A /∈ C

This is also sampled from Flickr30k Entities [9]. We
use the entity information of each noun phrase (query-
phrase) provided in the dataset. The entities provided are
“people”, “clothing”, “bodyparts”, “animals”, “vehicles”,
“instruments”, “scene” and “other”. “Other” is used to de-
note those phrases which cannot be categorized into one of
the remaining entities.

We extract out all the images with at least one phrase
belonging to the “other” category. Of these, we randomly
sample 50% and use them for testing. Of the remaining im-
ages, we remove the annotations with the “other” category
and use them for training.

The main motivation behind Case1 is to see how well
the model generalizes to novel object categories.

1.3. Case 2, 3: ∃B objects semantically close to A

The two cases share the same training images but dif-
ferent test images. We sample the images and queries from
the Visual Genome dataset [5]. The dataset creation process
has three major components: (i) cleaning the annotations to
make them consistent (ii) clustering the objects and creating
the train/test splits to satisfy the dataset properties of Case
2, 3 (iii) balancing the resulting splits.
Cleaning Visual Genome Annotations: In visual genome
each image has an average of 200 phrases. A phrase refers
to a single object but may contain multiple objects in it.
Consider the phrase“man holding a pizza”; it is not directly
specified if the referred object is a “man” or a “pizza” but
there will be a bounding box in the image corresponding
to the referred object, let us call it phrase BB; we need to
infer the synset for this phrase BB. In addition, for each im-
age, there are also annotated bounding boxes for each object
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type that appears in any of the phrases; in our example, there
would be annotations for “man”, “pizza” and other objects
that may appear in other phrases. To identify the synset for
a phrase BB, we find the object bounding box that it has the
maximum IoU with and use the object label associated with
that bounding box.

Another difficulty is that if the same object instance is re-
ferred to in different phrases, it will have a different phrase
BB associated with it. For consistency, we choose one and
apply to all phrases. In implementation, we apply a non-
maxima suppression algorithm (we use the code provided
in [7]); even though, there are no scores associated with the
boxes, the algorithm selects on among highly overlapping
alternatives. This step provides us with a consistent set of
annotations.

Even though the resulting annotations are consistent, the
annotations are still spatially imprecise. Due to this reason,
we recommend measuring detection accuracy with with
IoU threshold of 0.3 instead of the more common value
of 0.5.

Clustering Objects: Once we have a clean and consis-
tent set of annotations, we sort all the objects (nearly 5k ob-
jects) by the number of appearances in the image. However,
the objects at the tail end of the distribution are very infre-
quent so we consider only the top 1k objects. Few of these
don’t have a corresponding word embedding (not available
in spacy [3]) so we discard them. This results in a total of
902 objects.

Next, we cluster the GloVe [8] word embeddings of the
objects using K-Means clustering (with K = 20). We sort
the objects in each cluster in descending order with respect
to their frequency. For a particular cluster k, we consider
the first half to be “seen” (Sk) and the other half to be “un-
seen” (Uk). This gives us a total of 445 seen objects and
457 unseen objects. For a given cluster k we consider all
the images which have at least one object oi ∈ Uk to be test
images. If there is another object in the same image oj such
that oj ∈ Sk, we put this image query pair into Case3 else
into Case2.

For the remaining images, we remove annotations for
any object oi ∈ ∪kUk and ensure there is at-least one object
oi ∈ ∪kSk and use these to form the training set. However,
by construction the training set turns out to be imbalanced
with respect to clusters.

Balancing the Dataset To address the above issue we
use the following balancing strategy:

• We use Zipf’s law approximation that freq× rank ≈
C. That is as the rank of the cluster increases the
number of annotations for that cluster decreases in a
hyperbolic way. We use this to calculate an approxi-
mate mean of the clusters. Finally, we also consider
2×min cluster freq and take the max of the two.

• Thus, we have an approximate threshold at which we
would like to sample. If for a particular cluster this
threshold is more than the number of annotations in
that cluster, we leave that cluster as it is, else we ran-
domly sample n = threshold annotations for each
cluster.

• Note that balancing is only done with respect to the
clusters and not with respect to the object names.

Using this balancing strategy we get a balanced train set.
We use 25% of it for validation. For test sets we keep both
balanced and unbalanced sets.

The main motivation for Case2, 3 is to see how well the
model generalizes to novel objects even if it depends on the
semantic distance of the “seen” objects and if it can disam-
biguate the novel objects from the “seen” objects.

1.4. Choice of Datasets

We note that Flickr30k Entities doesn’t provide synset
information which is important to disambiguate synonym
cases hence it cannot be used for Case2, 3. Visual Genome
doesn’t contain wide categories like “vehicles” hence it can-
not be used for Case 1. For Case0, we could use Visual
Genome as well, however, we choose Flickr30k Entities due
to its precise bounding boxes.

2. Dataset Distributions
We provide statistics for each dataset in Fig 1. For Case0

we show the entity-wise distribution (a),(b),(c). In particu-
lar we note that the “other” category occupies a larger set
in the validation and test sets. This is because the “other”
category has a more diverse vocabulary and encompasses a
larger part of the exclude vocabulary list. For Case1, since
it only has “other” category in its validation and test set, the
entity-wise distributions are not meaningful and we don’t
include them here.

For Case2,3 we show the distributions with respect to
the clusters formed via K-Means for both the unbalanced
[(d),(e),(f)] and balanced cases [(g), (h), (i)]. We don’t train
on the unbalanced set but do test on the unbalanced set as
well. Note that the distribution across clusters in the bal-
anced sets are uniform which means our balancing strategy
was successful.

3. Proposals from Pre-Trained Detector(s)
A crucial difference between ZSGNet and prior work is

the removal of proposals obtained from a pre-trained net-
work. To explicitly analyze the the errors caused due to
missing proposals we calculate the proposal recall.

Proposal Recall: We measure the recall rates (@300) of
the region proposal network (RPN) from FasterRCNN [12]
pretrained on Pascal VOC [2] and fine-tuned on the target
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(a) Case0 Training Set (b) Case0 Validation Set (c) Case0 Test Set

(d) Case2,3 Unbalanced Training Set (e) Case2 Unbalanced Test Set (f) Case3 Unbalanced Test Set

(g) Case2,3 Balanced Training Set (h) Case2 Balanced Test Set (i) Case3 Balanced Test Set

Figure 1. Category-wise distribution of various unseen splits. First row: training, validation and test set splits for Case 0; second row:
unbalanced training and test sets for Case2 and Case 3; third row: balanced training and test sets for Case 2 and Case 3. In a row, the colors
represent the same entities or the same clusters.

dataset in Table 1. For ReferIt [4] we use the fine-tuned
model on Flickr30k Entities [13] to be consistent with QRC
[1]. We note that (i) proposal recall significantly improves
when we fine-tune on the target dataset (ii) performance of
QRG on Flickr30k, case0, case1 follows the same trend
as the proposal recall (iii) proposal recall is significantly
smaller on Visual Genome [5] due to (a) a large number
of classes in visual genome (b) considering the “unseen”

classes during training as negatives. These recall scores mo-
tivate the use of dense proposals for zero-shot grounding.

4. Image Blind and Language Blind Ablations
Model Ablations: We ablate our model in two settings:

language blind (LB) (the model sees only the image and
not the query) and image blind (IB) (the model considers
the query but not the image). We provide the results ob-
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Flickr30k ReferIt
Flickr
case0

Flickr
case1

VG
2B

VG
3B

FR (no f/t) 73.4 25.4 64.95 62.9 15.87 13.92
FR (f/t) 90.85 58.35 85.18 74.85 26.17 25.07

Table 1. Proposal Recall Rates using top-300 proposals at IoU =
0.5 (0.3 for VG) calculated on test sets. FR: FasterRCNN [40], no
f/t: pretrained on pascal voc, f/t: fine-tuned on the target training
set. For referit we use f/t model on Flickr30k to be consistent with
QRC.

Model Flickr30k ReferIt
Flickr
case0

Flickr
case1

VG
2B

VG
3B

LB 0.008 0.0042 0.009 0.0024 0.0084 0.0093
IB 28.07 24.75 24.42 17.15 9.5 9.27

Table 2. Ablation study: Language Blind (LB) and Image Blind
(IB) setting using Images of Resolution 300 × 300. Metric re-
ported is Accuracy@IoU=0.5 (0.3 for VG)

tained after retraining the model in Table 2. In the LB case,
our model sees multiple correct solutions for the same im-
age and therefore gives a random box output leading to a
very low accuracy across all datasets. In the IB case, our
model learns to always predict a box in the center. We note
that the referred object lies in the center of the image for
Flickr30k and ReferIt. This is because Flickr30k Entities
contains queries derived from captions which refer to the
central part of the image and ReferIt is a two player game
with a high chance of referring to the central object, leading
to relatively high accuracy 25− 30%.

However, this is substantially lower for Visual Genome
(9− 10%) which has denser object annotations.

5. Inference Time
Since our proposed model ZSGNet uses dense propos-

als and doesn’t perform RoI pooling, our model is highly
efficient in computation like other single-shot architectures
[6, 11, 10]. Our overall speed is 30ms for 600× 600 image
on a single Titan X.
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