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1. Overview
Structured light (SL) on small form-factor devices have


tightly coupled constraints of small baseline, limited hard-
ware complexity and low computational resources. We pro-
pose Micro-baseline Structured Light (MSL), a novel ap-
proach that needs only a single pattern, with fast decod-
ing. The main paper introduced the algorithm and discussed
choice of various system parameters, based on which a pro-
totype was developed to experimentally examine its practi-
cality. The goal of this supplementary document is to pro-
vide (1) fast implementation of MSL algorithm, (2) more
real-world results, and (3) theoretical derivations of Propo-
sition 5.1 and discussions of Section 7.1 in the main paper.


2. Fast Implementation of MSL
By assuming locally constant disparity and albedo, we


have the following system of linear equations within a small
n× n window


I(xl, ym) = ρ0P (xl, ym) + ũ0P
′(xl, ym)


where xc − n/2 ≤ xl ≤ xc + n/2,


yc − n/2 ≤ xm ≤ yc + n/2


=⇒ ic = ρ0p+ ũ0px,


where (xc, yc) is the central pixel in the window, ic is vec-
tor of camera measurements around this pixel, p is vector of
projector intensities, and px is vector of gradient of the pat-
tern. Using the above equations, the least squares solution
yields the following expression(


p>ic
p>x ic


)
=


(
‖p‖2 p>px


p>px ‖px‖2
)(


ρ0
ũ0


)
,


and disparity at (xc, yc) is recovered as


u(xc, yc) =
ũ0
ρ0


=
‖p‖2(p>x ic)− (p>px)(p


>ic)


‖px‖2(p>ic)− (p>px)(p>x ic)
.
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Let I‖p‖2 be an image where each pixel stores ‖p‖2
around its neighbor. We similarly compute the images
Ip>px


, I‖px‖2 , Ip>i, and Ip>
x i. The disparity map of the


scene Iu can then be computed as,


Iu =
I‖p‖2 � Ip>


x i − Ip>px
� Ip>i


I‖px‖2 � Ip>i − Ip>px
� Ip>


x i


, (1)


where � represents element-wise product, and division is
done at each pixel. Notice that computation of I‖p‖2 and
other such images have a large overlap for adjacent pixel.
We will focus on how I‖p‖2 can be computed efficiently.
This computation is then extended to all images.


The dot product ‖p‖2 can be concisely written as,


I‖p‖2 = boxfilt(P � P, n), (2)


where boxfilt(·, n) is a box filtering operation with window
size n×n. The box filtering can be efficiently implemented
using integral image approach [1] which makes the compu-
tation independent of window size. A further speed up is
achieved by pre-computing the scene-independent images
I‖p‖2 , I‖px‖2 , and Ip>px


. Hence, estimation of disparity
requires only computation of Ip>i and Ip>


x i.


Computations with guide image. The relevant equations
for computing disparity with guided MSL approach is,


I(xl, ym) = α0G(xl, ym)(P (xl, ym) + u0P
′(xl, ym))


I(xl, ym)


G(xl, ym) + ε
= α0(P (xl, ym) + u0P


′(xl, ym))


Î(xl, ym) = α0P (xl, ym) + (α0u0)P
′(xl, ym),


where ε is a small constant added for numerical stability.
By replacing I(x, y) with Î(x, y) = I(x, y)/(G(x, y) + ε),
we obtain an equation that is similar to MSL without guided
image, and hence can be solved efficiently.


The overall algorithm for guided MSL is detailed in
Alg. 1. Our optimized implementation of guided MSL re-
quired 27ms of decoding time on an Android phone for a 3
megapixel image.
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Algorithm 1 Guided MSL algorithm. MSL and its guided
version can be efficiently implemented by pre-computing
scene-independent entries of MSL matrix, box filtering and
element-wise operations.
Pre-compute: given pattern image P , derivative of pattern Px,
window size n, compute matrices of dot products
p1: I‖p‖2 = boxfilt(P � P, n)
p2: I‖px‖2 = boxfilt(Px � Px, n)
p3: Ip>px


= boxfilt(P � Px, n)


Input: image of the scene with pattern I , guide image G
1: I = I−G


G+ε


2: Ip>i = boxfilt(P � I, n)
3: Ip>


x i = boxfilt(Px � I, n)


4: Iu =
I‖p‖2�Ip>


x i
−I


p>px
�I


p>i


I‖px‖2�Ip>i
−I


p>px
�I


p>
x i


Output: disparity map Iu


3. Real Experiments
Effect of pattern choice. We provided an intuitive expla-
nation for our pattern choice being a triangular pattern. Fig-
ure 1 compares accuracy of computed depth of the scene by
projecting periodic ramp, sinusoid and triangular pattern of
20px period. Ramp was most inaccurate due to discontinu-
ity, which resulted in violation of first order approximation.
Triangular pattern was the most accurate, as it does not have
discontinuities and has approximately constant derivative.
The observations are in line with our intuition stated in the
main paper about triangular pattern and hence used it for all
our experiments.


MSL in various scenarios. Figure 2 shows some more
experiments we captured with our setup for various scenar-
ios using different periods. The first two experiments with
pillow and paper bag demonstrate applications which re-
quire large depth range but limited spatial variations. This
required a large pattern period to ensure an unambiguous
solution. The second two rows (breakfast and cleaners) are
made of small objects with more spatial variations, which
required a small period of 10px. The last three rows (toys
and Mayan bas-relief) consist of shallow depth but small
depth variations which required a small period to retain spa-
tial information and hence we used 6px period.


4. Theoretical Discussions
We discussed two theoretical contributions in the main


paper. The first contribution was about the nature of pattern
that ensured the MSL matrix was invertible. In this section,
we layout a proof of Proposition 5.1 in the main paper.


The second contribution was regarding locally linear ge-
ometry. We stated that the estimate of MSL equation is ac-
curate for locally linear geometry if and only if the deriva-


(a) Ramp
(34.5mm)


(b) Sinusoid
(6.7mm)


(c) Triangle
(5.7mm)


(d) Ramp
(35.6mm)


(e) Sinusoid
(14.5mm)


(f) Triangle
(14.4mm)


Figure 1: Effect of pattern. We captured data by project-
ing periodic ramp, sinusoid and triangular pattern of 20px
period. Estimate with ramp was most inaccurate due to dis-
continuity in the pattern. On an average, we found the trian-
gular pattern to be more accurate than the sinusoidal pattern,
and hence we used it in all our experiments.


tive of pattern has constant magnitude. We support our
claim with a rigorous proof.


4.1. Condition for invertibility


Proposition 4.1 (Necessary and sufficient condition for in-
vertibility). The MSL matrix is invertible if and only if the
projected pattern is not a constant or an exponential pattern
of the form P (x, y) = c1e


c2x.


Proof


Case 1: Pattern is constant We either have p = 0, in
which case, rank of the matrix is zero, or we have p = c1,
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Figure 2: MSL in various scenarios. We show several more examples of MSL. “Pillow” and “paper bag” were captured
with 20px period, “breakfast” and “cleaners” with 10px, and two “toy” and “Mayan art” with 6px. A larger period captures
wider range of depths while having lower spatial resolution, ideal for large planar or curved objects with few details. On
the other hand, smaller period captures smaller range of depth but is capable of resolving more spatial features. Finally the
smallest pattern of 6px can be used for capturing small variations in depth, such as small toys and bas-reliefs. Ground truth
is obtained by phase shifting with five different frequencies.







in which case, px = 0. Then rank of the matrix ix 1.


Case 2: Pattern is exponential In this case, P (x, y) =
c1e


c2x. Then we have,


P ′(x, y) = c1c2e
c2x. (3)


To keep analysis simple, we look at a row spanning n pixels
instead of all pixels in n × n window. Since the pattern
is constant along y-axis, analysis along any one row will
suffice. In that case,


p = (c1e
c2x1 , · · · c1ec2xn)>


px = (c1c2e
c2x1 , · · · c1c2ec2xn)>


=⇒ ‖p‖2 = c21


n−1∑
k=0


e2c2xk , ‖px‖2 = c22c
2
1


n−1∑
k=0


e2c2xk


p>px = c21c2


n−1∑
k=0


e2c2xk


=⇒ ‖p‖2‖px‖2 − (p>px)
2 = . . .


. . .(c21 · c21c22 − (c21c2)
2)


n−1∑
k=0


e2c2xk


= 0, .


4.2. MSL estimate for locally linear geometry


Realistic scenes are more accurately modeled as a lo-
cally linear disparity instead of constant disparity. We then
seek patterns which give an accurate estimate by solving
the MSL equation. The solution of MSL equation is un-
biased for locally linearly varying disparity if and only if
P ′(x, y) = ±const. We now give a proof of this statement.


Proof. Let u(x, y0) = u1 + u2x + u3y0 = u4 + u2x be
the disparity along one row within an n × n window. Let
ρ0u(x, y0) = ũ4 + ũ2x. The local constraint equation,


I(xl, y0) = ρ0P (xl, y0) + (ũ4 + ũ2xl)P
′(xl, y0) (4)


We say the estimate of MSL equation is invariant to tilted
planes if ũ0 is equal to the disparity at the center pixel, ũ4+
ũ2xn/2. The solution is guaranteed to be the average if the
pattern has a constant magnitude of derivative.


Sufficient condition. We show that a pattern with con-
stant magnitude of derivative ensures invariance to tilted
planes as follows:


1


p>x px


n−1∑
k=0


p2
x(k)k =


n+ 1


2


=⇒
n−1∑
k=0


p2
x(k)k =


n+ 1


2


n∑
k=0


p2
x(k) (5)


Necessary condition. Note that disparity at every point
in the camera image is estimated using a sliding window.
Hence, the invariance has to hold for any window location.
This implies that the equation has to hold for any cyclic
shifts of p2


x(k). Hence the complete requirement is the fol-
lowing:


n−1∑
k=0


p2
x((k + p)%n)k =


n+ 1


2


n−1∑
k=0


p2
x((k + p)%n)


=
n+ 1


2


n−1∑
k=0


p2
x(k), (6)


where p = 0, 1, · · · , n − 1, which gives n constraints, for
all positions of window. Writing in a matrix form,p2


x(1) · · · p2
x(n)


...
. . .


...
p2
x(n) · · · p2


x(1)



1


...
n


 =


p0...
p0


 , (7)


where p0 = n+1
2


n∑
k=0


p2
x(k+p). Let H be the left hand side


matrix. Since it is a circulant matrix we can use Fourier
transform property to write it as, H = F>Dp2


x
F , where F


is the DFT matrix, and Dp2
x


is a diagonal matrix with DFT
of p2


x. Multiplying both sides by F , we get,


H


1
...
n


 =


p0...
p0


 (8)


=⇒ F>Dp2
x
Fr = p01 (9)


=⇒ Dp2
x
(Fr) = p0(F1). (10)


The right hand side, F1 = (n, 0, 0, · · · , 0)>. Hence the
equation is satisfied only if


Dp2
x
(k, k) =


{
constant k = 1


0 k 6= 1
. (11)


This implies that p2
x(k) = constant, .


Choice of pattern. The proof in previous section implies
that the only pattern capable of invariance to tilted planes
is an intensity ramp. However, due to small derivative of
an intensity ramp, it is not desirable. This motivates our
intuitive choice of a periodic symmetric triangular pattern,
which has approximately constant derivative, and has large
magnitude of derivative.


Handling discontinuity in derivatives. A triangular pat-
tern approximates invariance to tilted planes well. However,







at the peak and trough of the triangle, there is a discontinu-
ity in derivative, that reduces approximation accuracy. To
counter this effect, we give low weights to data around the
peak of triangle, thus reducing its effect. While this reduces
the number of pixels used in the window, the overall accu-
racy of estimate is higher.
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