
Habitat: A Platform for Embodied AI Research
Supplemental Materials

Manolis Savva1,4*, Abhishek Kadian1*, Oleksandr Maksymets1*, Yili Zhao1,
Erik Wijmans1,2,3, Bhavana Jain1, Julian Straub2, Jia Liu1, Vladlen Koltun5,

Jitendra Malik1,6, Devi Parikh1,3, Dhruv Batra1,3

1Facebook AI Research, 2Facebook Reality Labs, 3Georgia Institute of Technology,
4Simon Fraser University, 5Intel Labs, 6UC Berkeley

1. Habitat Platform Details

As described in the main paper, Habitat consists of the
following components:
• Habitat-Sim: a flexible, high-performance 3D

simulator with configurable agents, multiple sensors,
and generic 3D dataset handling (with built-in sup-
port for Matterport3D [3], Gibson [6], and other
datasets). Habitat-Sim is fast – when rendering a
realistic scanned scene from the Matterport3D dataset,
Habitat-Sim achieves several thousand frames per
second (fps) running single-threaded, and can reach
over 10,000 fps multi-process on a single GPU.
• Habitat-API: a modular high-level library for end-

to-end development of embodied AI – defining embod-
ied AI tasks (e.g. navigation [1], instruction follow-
ing [2], question answering [4]), configuring embodied
agents (physical form, sensors, capabilities), training
these agents (via imitation or reinforcement learning,
or via classic SLAM), and benchmarking their perfor-
mance on the defined tasks using standard metrics [1].
Habitat-API currently uses Habitat-Sim as the
core simulator, but is designed with a modular abstrac-
tion for the simulator backend to maintain compatibility
over multiple simulators.

Key abstractions. The Habitat platform relies on a num-
ber of key abstractions that model the domain of embodied
agents and tasks that can be carried out in three-dimensional
indoor environments. Here we provide a brief summary of
key abstractions:
• Agent: a physically embodied agent with a suite of
Sensors. Can observe the environment and is capable
of taking actions that change agent or environment state.
• Sensor: associated with a specific Agent, capable

of returning observation data from the environment at a
specified frequency.

• SceneGraph: a hierarchical representation of a 3D
environment that organizes the environment into re-
gions and objects which can be programmatically ma-
nipulated.
• Simulator: an instance of a simulator backend.

Given actions for a set of configured Agents and
SceneGraphs, can update the state of the Agents
and SceneGraphs, and provide observations for all
active Sensors possessed by the Agents.

These abstractions connect the different layers of the
platform. They also enable generic and portable specification
of embodied AI tasks.
Habitat-Sim. The architecture of the Habitat-Sim back-
end module is illustrated in Figure 1. The design of this
module ensures a few key properties:
• Memory-efficient management of 3D environment re-

sources (triangle mesh geometry, textures, shaders) en-
suring shared resources are cached and reused.
• Flexible, structured representation of 3D environments

using SceneGraphs, allowing for programmatic ma-
nipulation of object state, and combination of objects
from different environments.
• High-efficiency rendering engine with multi-attachment

render pass to reduce overhead for multiple sensors.
• Arbitrary numbers of Agents and corresponding
Sensors that can be linked to a 3D environment by
attachment to a SceneGraph.

The performance of the simulation backend surpasses that
of prior work operating on realistic reconstruction datasets
by a large margin. Table 1 reports performance statistics on
a test scene from the Matterport3D dataset. Single-thread
performance reaches several thousand frames per second
(fps), while multi-process operation with several simulation
backends can reach over 10,000 fps on a single GPU. In
addition, by employing OpenGL-CUDA interoperation we
enable direct sharing of rendered image frames with ML

1

Mesh Sensor

ResourceManager

Texture Material Shader

SceneNode

SceneGraph

SceneManager

Simulator Agent

Figure 1: Architecture of Habitat-Sim main classes. The Simulator delegates management of all resources related to 3D environments
to a ResourceManager that is responsible for loading and caching 3D environment data from a variety of on-disk formats. These resources
are used within SceneGraphs at the level of individual SceneNodes that represent distinct objects or regions in a particular Scene. Agents
and their Sensors are instantiated by being attached to SceneNodes in a particular SceneGraph.

Figure 2: Performance of Habitat-Sim under different sensor
frame memory transfer strategies for increasing image resolution.
We see that ‘GPU->GPU’ is unaffected by image resolution while
other strategies degrade rapidly.

frameworks such as PyTorch without a measurable impact
on performance as the image resolution is increased (see
Figure 2).
Habitat-API. The second layer of the Habitat platform
(Habitat-API) focuses on creating a general and flex-
ible API for defining embodied agents, tasks that they may
carry out, and evaluation metrics for those tasks. When de-
signing such an API, a key consideration is to allow for easy
extensibility of the defined abstractions. This is particularly
important since many of the parameters of embodied agent
tasks, specific agent configurations, and 3D environment

1Note: The semantic sensor in Matterport3D requires using additional
3D meshes with significantly more geometric complexity, leading to re-
duced performance. We expect this to be addressed in future versions,
leading to speeds comparable to RGB + depth.

setups can be varied in interesting ways. Future research is
likely to propose new tasks, new agent configurations, and
new 3D environments.

The API allows for alternative simulator backends to
be used, beyond the Habitat-Sim module that we imple-
mented. This modularity has the advantage of allowing incor-
poration of existing simulator backends to aid in transitioning
from experiments that previous work has performed using
legacy frameworks. The architecture of Habitat-API is
illustrated in Figure 3, indicating core API functionality and
functionality implemented as extensions to the core.

Above the API level, we define a concrete embodied task
such as visual navigation. This involves defining a specific
dataset configuration, specifying the structure of episodes
(e.g. number of steps taken, termination conditions), training
curriculum (progression of episodes, difficulty ramp), and
evaluation procedure (e.g. test episode sets and task metrics).
An example of loading a pre-configured task (PointNav) and
stepping through the environment with a random agent is
shown in the code below.

import habitat

Load embodied AI task (PointNav)
and a pre-specified virtual robot
config = habitat.get_config(config_file=

"pointnav.yaml")
env = habitat.Env(config)

observations = env.reset()

Step through environment with random actions
while not env.episode_over:

observations = \
env.step(env.action_space.sample())

GPU→CPU→GPU GPU→CPU GPU→GPU

Sensors / number of processes 1 3 5 1 3 5 1 3 5

RGB 2,346 6,049 7,784 3,919 8,810 11,598 4,538 8,573 7,279
RGB + depth 1,260 3,025 3,730 1,777 4,307 5,522 2,151 3,557 3,486
RGB + depth + semantics1 378 463 470 396 465 466 464 455 453

Table 1: Performance of Habitat-Sim in frames per second for an example Matterport3D scene (id 17DRP5sb8fy) on a Xeon E5-2690
v4 CPU and Nvidia Titan Xp GPU, measured at a frame resolution of 128x128, under different frame memory transfer strategies and with a
varying number of concurrent simulator processes sharing the GPU. ‘GPU-CPU-GPU’ indicates passing of rendered frames from OpenGL
context to CPU host memory and back to GPU device memory for use in optimization, ‘GPU-CPU’ only reports copying from OpenGL
context to CPU host memory, whereas ‘GPU-GPU’ indicates direct sharing through OpenGL-CUDA interoperation.

Habitat-Sim

Environment

Episodes
Dataset

Task

Navigation

Embodied QA

Simulator API

Matterport3D EQA Replica EQA

use inherit

Sensor API

Matterport3D PointNav Replica PointNav

Episode

Gibson PointNav

RL Environment RL baselines

SLAM

Imitation
learning

. . .

core API extensions and implementations

Baselines

Figure 3: Architecture of Habitat-API. The core functionality defines fundamental building blocks such as the API for interacting with
the simulator backend and receiving observations through Sensors. Concrete simulation backends, 3D datasets, and embodied agent
baselines are implemented as extensions to the core API.

2. Additional Dataset Statistics

In Table 3 we summarize the train, validation and test split
sizes for all three datasets used in our experiments. We also
report the average geodesic distance along the shortest path
(GDSP) between starting point and goal position. As noted
in the main paper, Gibson episodes are significantly shorter
than Matterport3D ones. Figure 4 visualizes the episode
distributions over geodesic distance (GDSP), Euclidean dis-
tance between start and goal position, and the ratio of the
two (an approximate measure of complexity for the episode).
We again note that Gibson episodes have more episodes with
shorter distances, leading to the dataset being overall easier
than the Matterport3D dataset.

Dataset scenes (#) episodes (#) average GDSP (m)

Matterport3D 58 / 11 / 18 4.8M / 495 / 1008 11.5 / 11.1 / 13.2
Gibson 72 / 16 / 10 4.9M / 1000 / 1000 6.9 / 6.5 / 7.0

Table 2: Statistics of the PointGoal navigation datasets that we
precompute for the Matterport3D and Gibson datasets: total number
of scenes, total number of episodes, and average geodesic distance
between start and goal positions. Each cell reports train / val / test
split statistics.

3. Additional Experimental Results

In order to confirm that the trends we observe for the
experimental results presented in the paper hold for much
larger amounts of experience, we scaled our experiments to
800M steps. We found that (1) the ordering of the visual

Figure 4: Statistics of PointGoal navigation episodes. From left: distribution over Euclidean distance between start and goal, distribution
over geodesic distance along shortest path between start and goal, and distribution over the ratio of geodesic to Euclidean distance.

Dataset Min Median Mean Max

Matterport3D 18 90.0 97.1 281
Gibson 15 60.0 63.3 207

Table 3: Statistics of path length (in actions) for an oracle which
greedily fits actions to follow the negative of geodesic distance
gradient on the PointGoal navigation validation sets. This provides
expected horizon lengths for a near-perfect agent and contextualizes
the decision for a max-step limit of 500.

0 5 10 15 20 25 30 35 40
Avg. Collisions

Gibson Blind
RGB
RGBD
Depth

MP3D Blind
RGB
RGBD
Depth

Figure 5: Average number of collisions during successful naviga-
tion episodes for the different sensory configurations of the RL
(PPO) baseline agent on test set episodes for the Gibson and Matter-
port3D datasets. The Blind agent experiences the highest number
of collisions, while agents possessing depth sensors (Depth and
RGBD) have the fewest collisions on average.

inputs stays Depth > RGBD > RGB > Blind; (2) RGB
is consistently better than Blind (by 0.06/0.03 SPL on
Gibson/Matterport3D), and (3) RGBD outperforms SLAM
on Matterport3D (by 0.16 SPL).

3.1. Analysis of Collisions

To further characterize the behavior of learned agents
during navigation we plot the average number of collisions
in Figure 5. We see that Blind incurs a much larger number
of collisions than other agents, providing evidence for ‘wall-
following’ behavior. Depth-equipped agents have the lowest
number of collisions, while RGB agents are in between.

3.2. Noisy Depth

To investigate the impact of noisy depth measurements on
agent performance, we re-evaluated depth agents (without

re-training) on noisy depth generated using a simple noise
model: iid Gaussian noise (µ = 0, σ = 0.4) at each pixel
in inverse depth (larger depth = more noise). We observe
a drop of 0.13 and 0.02 SPL for depth-RL and SLAM on
Gibson-val (depth-RL still outperforms SLAM). Note that
SLAM from [5] utilizes ORB-SLAM2, which is quite robust
to noise, while depth-RL was trained without noise. If we
increase σ to 0.1, depth-RL gets 0.12 SPL whereas SLAM
suffers catastrophic failures.

4. Gibson Dataset Curation

We manually curated the full dataset of Gibson 3D tex-
tured meshes [6] to select meshes that do not exhibit signifi-
cant reconstruction artifacts such as holes or texture quality
issues. A key issue that we tried to avoid is the presence of
holes or cracks in floor surfaces. This is particularly problem-
atic for navigation tasks as it divides seemingly connected
navigable areas into non-traversable disconnected compo-
nents. We manually annotated the scenes (using the 0 to 5
quality scale shown in Figure 6) and only use scenes with a
rating of 4 or higher, i.e., no holes, good reconstruction, and
negligible texture issues to generate the dataset episodes.

5. Reproducing Experimental Results

Our experimental results can be reproduced using the
habitat-sim (commit d383c20) and Habitat-Sim
(commit ec9557a) repositories. The code for
running experiments is present under the folder
habitat-api/habitat_baselines. Below is
the shell script we used for our RL experiments:

Note: parameters in {} are experiment specific.
Note: use 8, 6 processes for Gibson, MP3D
respectively.

python habitat_baselines/train_ppo.py \
--sensors {RGB_SENSOR,DEPTH_SENSOR} \
--blind {0,1} --use-gae --lr 2.5e-4 \
--clip-param 0.1 --use-linear-lr-decay \
--num-processes {8,6} --num-steps 128 \
--num-mini-batch 4 --num-updates 135000 \
--use-linear-clip-decay \

https://github.com/facebookresearch/habitat-sim/tree/d383c2011bf1baab2ce7b3cd40aea573ad2ddf71
https://github.com/facebookresearch/habitat-api/tree/ec9557a3623991208a80f836fe557f8028209297

For running SLAM please refer to habitat-
api/habitat_baselines/slambased.

6. Example Navigation Episodes
Figure 7 visualizes additional example navigation

episodes for the different sensory configurations of the RL
(PPO) agents that we describe in the main paper. Blind
agents have the lowest performance, colliding much more
frequently with the environment and adopting a ‘wall hug-
ging’ strategy for navigation. RGB agents are less prone
to collisions but still struggle to navigate to the goal posi-
tion successfully in some cases. In contrast, depth-equipped
agents are much more efficient, exhibiting fewer collisions,
and navigating to goals more successfully (as indicated by
the overall higher SPL values).

References
[1] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied navigation
agents. arXiv:1807.06757, 2018. 1

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark John-
son, Niko Sünderhauf, Ian Reid, Stephen Gould, and Anton
van den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments.
In CVPR, 2018. 1

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber,
Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng,
and Yinda Zhang. Matterport3D: Learning from RGB-D data
in indoor environments. In International Conference on 3D
Vision (3DV), 2017. 1

[4] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,
Devi Parikh, and Dhruv Batra. Embodied Question Answering.
In CVPR, 2018. 1

[5] Dmytro Mishkin, Alexey Dosovitskiy, and Vladlen Koltun.
Benchmarking classic and learned navigation in complex 3D
environments. arXiv:1901.10915, 2019. 4

[6] Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jitendra
Malik, and Silvio Savarese. Gibson env: Real-world perception
for embodied agents. In CVPR, 2018. 1, 4

https://github.com/facebookresearch/habitat-api/tree/ec9557a3623991208a80f836fe557f8028209297/habitat_baselines/slambased
https://github.com/facebookresearch/habitat-api/tree/ec9557a3623991208a80f836fe557f8028209297/habitat_baselines/slambased

0: critical reconstruction artifacts, holes, or texture issues 1: big holes or significant texture issues and reconstruction artifacts

2: big holes or significant texture issues, but good reconstruction 3: small holes, some texture issues, good reconstruction

4: no holes, some texture issues, good reconstruction 5: no holes, uniform textures, good reconstruction

Figure 6: Rating scale used in curation of 3D textured mesh reconstructions from the Gibson dataset. We use only meshes with ratings of 4
or higher for the Habitat Challenge dataset.

Gibson

Blind SPL = 0.00 RGB SPL = 0.45

RGBD SPL = 0.82 Depth SPL = 0.88

Blind SPL = 0.00 RGB SPL = 0.29

RGBD SPL = 0.49 Depth SPL = 0.96

Figure 7: Additional navigation example episodes for the different sensory configurations of the RL (PPO) agent, visualizing trials from
the Gibson and MP3D val sets. A blue dot and red dot indicate the starting and goal positions, and the blue arrow indicates final agent
position. The blue-green-red line is the agent’s trajectory. Color shifts from blue to red as the maximum number of allowed agent steps is
approached.

MP3D

Blind SPL = 0.00 RGB SPL = 0.40

RGBD SPL = 0.92 Depth SPL = 0.98

Figure 7: Additional navigation example episodes for the different sensory configurations of the RL (PPO) agent, visualizing trials from
the Gibson and MP3D val sets. A blue dot and red dot indicate the starting and goal positions, and the blue arrow indicates final agent
position. The blue-green-red line is the agent’s trajectory. Color shifts from blue to red as the maximum number of allowed agent steps is
approached.

