Neural Inverse Rendering of an Indoor Scene From a Single Image

Soumyadip Sengupta'>>T, Jinwei Gu'*T, Kihwan Kim', Guilin Liu', David W. Jacobs?, and Jan Kautz'

INVIDIA, 2University of Maryland, College Park, *University of Washington, *SenseTime

1. Overview

In this supplementary material, we provide more details
of our network architecture and the loss functions along
with additional qualitative evaluations. Specifically, in Sec-
tion 2 we discuss the details of the IRN and RAR network
architectures for reproducibility. Details of our training loss
functions on real data are provided in Section 3. In Sec-
tion 5 we present additional qualitative evaluations.

2. Network Architectures

Our proposed Inverse Rendering Network (IRN), shown
again in Figure 1 for reference, is trained on real data
using the Residual Appearance Renderer (RAR), which
learns to capture the complex appearance effects (e.g. inter-
reflection, cast shadows, near-field illumination, and realis-
tic shading). In the following, we describe the implementa-
tion details of IRN and RAR.

2.1.IRN

In Figure 2 we present the network architecture of IRN.

The input to IRN is an image of spatial resolution 240 x 320,
and the output is an albedo and normal map of same spatial
resolution along with a 18 x 36 resolution environment map.
Here we provide the details of the each block in IRN.
‘Enc’: C64(k7) - C*128(k3) - C*256(k3)
‘CN(kS)’ denotes convolution layers with N .S x S filters
with stride 1, followed by Batch Normalization and ReL.U.
‘C*N(kS)’ denotes convolution layers with N S x S
filters with stride 2, followed by Batch Normalization and
ReLU. The output of ‘Enc’ layer produces a blob of spatial
resolution 256 x 60 x 80.

‘Normal ResBLKSs’: 9 ResBLK

This consists of 9 Residual Blocks, ‘ResBLK’s, which op-
erate at a spatial resolution of 256 x 60 x 80. Each ‘Res-
BLK’ consists of Conv256(k3) - BN -ReLLU - Conv256(k3)
- BN, where ‘ConvN(kS)’ and ‘BN’ denote convolution lay-
ers with N S x S filters of stride 1 and Batch Normalization.
‘Albedo ResBLKs’: Same as ‘Normal Residual Blocks’

(weights are not shared).

‘Dec.’: CD*128(k3)-CD*64(k3)-Co3(k7)

‘CD*N(kS)’ denotes Transposed Convolution layers with
N S x S filters with stride 2, followed by Batch Normal-
ization and ReLU. ‘CN(kS)’ denotes convolution layers
with N § x S filters with stride 1, followed by Batch
Normalization and ReLLU. The last layer Co3k(7) consists
of only convolution layers of 3 7 x 7 filters, followed by
Tanh layer.

‘Light Est.’: It first concatenates the responses of ‘Enc’,
‘Normal ResBLKs’ and ‘Albedo ResBLKs’ to produce a
blob of spatial resolution 768 x 60 x 80. It is further pro-
cessed by the following module:

C256(k1) - C*¥256(k3) - C*128(k3) - C*3(k3) - BU(18,36)
‘CN(kS)’ denotes convolution layers with N S x S filters
with stride 1, followed by Batch Normalization and ReL.U.
‘C*N(kS)’ denotes convolution layers with N .S x S filters
with stride 2, followed by Batch Normalization and ReL.U.
BU(18,36) upsamples the response to produce 18 x 36 x 3
resolution environment map.

2.2. RAR

As shown in Figure 1, Residual Appearance Renderer
(RAR) consists of a U-Net architecture and a convolution
encoder. The U-Net consists of the following architecture,
with normals and albedo as its input:

‘Encoder’: C64(k3) - C*64(k3) - C*128(k3) - C*256(k3) -
C*512(k3)

‘Decoder’: CUS512(k3) - CU256(k3) - CU128(k3) -
CU64(k3) - Co3(k1)

‘CN(kS)’ denotes convolution layers with N .S x S filters
with stride 1, followed by Batch Normalization and ReLU.
‘C*N(kS)’ denotes convolution layers with N .S x S filters
with stride 2, followed by Batch Normalization and ReL.U.
‘CUN(kS)’ represents a bilinear up-sampling layer , fol-
lowed by convolution layers with N .S x S filters with stride
1, followed by Batch Normalization and ReL.U. ‘Co3(k1)’
consists of 3 1 x 1 convolution filters to produce Normal or
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Figure 1: Our Proposed Architecture.
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Figure 2: IRN.

Albedo. Skip-connections exists between ‘C*N(k3)’ lay-
ers of encoder and ‘CUN(k3)’ layers of decoder. The en-
coder ‘Enc’ that encodes image features to a latent D =
300 dimensional subspace is given by: ‘Enc’: C64(k7) -
C*128(k3) - C*256(k3) - C128(k1) - C64(k3) - C*32(k3) -
C*16(k3) - MLP(300)

‘CN(kS)’ denotes convolution layers with N S’ x S filters
with stride 1, followed by Batch Normalization and ReL.U.
‘C*N(kS)’ denotes convolution layers with N S x S filters
with stride 2, followed by Batch Normalization and ReL.U.
MLP(300) takes the response of the previous layer and out-
puts a 300 dimensional feature, which is concatenated with
the last layer of the U-Net ‘Encoder’.

2.3. Environment Map Estimator

As discussed in Section 3.1 of the main paper, the
ground-truth environment map is estimated from the im-
age, ground-truth albedo and normal using a deep network
he(+,©.). The detailed architecture of this network is pre-
sented below:

C64(k7) - C*¥128(k3) - C*256(k3) - 4 ResBLKS - C256(k1)
- C*256(k3) - C*128(k3) - C*3(k3) - BU(18,36),
where, ‘CN(kS)’ denotes convolution layers with N .S x S

filters with stride 1, followed by Batch Normalization and
ReLU. ‘C*N(kS)’ denotes convolution layers with N .S x .S
filters with stride 2, followed by Batch Normalization and
ReLU. BU(18,36) upsamples the response to produce 18 x
36 x 3 resolution environment map. Each ‘ResBLK’ con-
tains Conv256(k3) - BN -ReLLU - Conv256(k3) - BN, where
‘ConvN(kS)’ denotes convolution layers with N S x S filters
of stride 1, ‘BN’ denoted Batch Normalization.

3. Training Details
3.1. Training with weak supervision over albedo

IIW dataset presents relative reflectance judgments from
humans. For any two points R; and Ry on an image, a
weighted confidence score classifies 21 to be same, brighter
or darker than Rs;. We use these labels to construct a
hinge loss for sparse supervision based on WHRD met-
ric presented in [2]. Specifically, if users predict R; to
be darker than R, with confidence w;, we use a loss
wymax(l + § — Ry/Ry,0). If Ry and Ry are predicted
to have similar reflectance, we use w;[max(Ry /Ry — 1 —
3,0) + max(Rz/R; — 1 — 4,0)]. We observed empirically
that this loss function performs better than WHRD metric,
which is an LO version of our loss. We train on real data
with the following losses: (i) Psuedo-supervision loss over
albedo (L,), normal (L,,) and lighting (L. ) based on [6], (ii)
Photometric Reconstruction loss with RAR (L,,) (iii) Pair-
wise weak supervision (L,,). Thus the net loss function is
defined as:

L=05%Lg+0.5%Ly+0.1%Le+ Ly +30% L. (1)

3.2. Training with weak supervision over normals

We also train on NYUv2 dataset with weak supervision
over normals, obtained from Kinect depth data of the scene.
We train with the following losses: (i) Psuedo-supervision



loss over albedo (L,) and lighting (L.) based on [6], (ii)
Photometric Reconstruction loss with RAR (L,,) (iii) Super-
vision (L,,) over kinect normals. Thus the net loss function
is defined as:

L=02%Ly+005%L.+Ly+20%Ly.  (2)

4. Our CG-PBR Dataset

We present more example images of our CG-PBRS
dataset in Figure 3. We also compare the renderings of our
CG-PBR Dataset with that of PBRS [7], under the same il-
lumination condition in Figure 4 and 5. CG-PBR provides
more photo-realistic and less noisy images with specular
highlights. Both CG-PBR and PBRS are rendered with Mit-
suba [4].

5. More Experimental Results

Comparison with SIRFS. We present more detailed
qualitative evaluations in this supplementary material. In
Figure 6 we compare the results of our algorithm with that
of SIRFS [1]. SIRFS is an optimization-based method for
inverse rendering, which estimates surface normals, albedo
and spherical harmonics lighting from a single image. Com-
pared to SIRFS we obtain more accurate normals and better
disambiguation of reflectance from shading.

Comparison with Li et al. [5]. In Figure 7 and 8 we com-
pare the albedo predicted by our method with that of Li et
al. [5], which performs intrinsic image decomposition of an
image, on the real IIW and the synthetic CG-PBR dataset
respectively. Intrinsic image decomposition methods do not
explicitly recover geometry, illumination or glossiness of
the material, but rather combine them together as shading.
In contrast, our goal is to perform a complete inverse ren-
dering which has a wider range of applications in AR/VR.

Evaluation of lighting estimation. In Figure 9 we
present a qualitative evaluation of lighting estimation by
inserting a diffuse hemisphere into the scene and render-
ing it with the inferred light from the image. We com-
pare this with the method proposed by Gardner et al. [3],
which also estimates an environment map from a single in-
door image. h.(-,0.) is a deep network that predicts the
environment map given the image, normals, and albedo.
‘GT+h,(-)” estimates the environment map given the im-
age, ground-truth normals and albedo, and thus serves as
an achievable upper-bound in the quality of the estimated
lighting. ‘Ours’ estimates environment map from an image
with IRN. ‘Ours+h.(-)" predicts environment map by com-
bining the inferred albedo and normals from IRN to predict
lighting with h.(-). Both ‘Ours’ and ‘Ours+h.(-)’ outper-
form Gardner et al. [3] as they seem to produce more re-
alistic environment maps. ‘Ours+h,(-)" improves lighting

estimation over ‘Ours’ by utilizing the predicted albedo and
normals to a greater degree.

Our Results and Ablation study. Figure 10 shows ex-
amples of our results, with the albedo, normal and light-
ing predicted by the network, as well as the reconstructed
image with the direct renderer and the proposed Residual
Appearance Renderer (RAR). In Figure 11 and 12, we per-
form a detailed ablation study of different components of
our method. We show that it is important to train on real
data, as networks trained on synthetic data fail to generalize
well on real data. We also show that training our method
without RAR (‘w/o RAR’) produces piece-wise smooth,
low contrast albedo due to over-reliance on the weak super-
vision of pair-wise relative reflectance judgments. Training
our network with only RAR, without any weak supervision
(‘w/o weak’), often fails to produce consistent albedo across
large objects like walls, floor, ceilings etc. Finally, training
without RAR and weak supervision (‘w/o weak + RAR’)
produces albedo which contains the complex appearance
effects like cast shadows, inter-reflections, highlights etc.,
as the reconstruction loss with direct renderer alone cannot
model these effects.
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Figure 3: Our CG-PBR Dataset concists of 235,893 images of a scene assuming specular and diffuse reflectance along with ground truth
depth, surface normals, albedo, Phong model parameters, semantic segmentation and glossiness segmentation.



Figure 4: Comparison with PBRS [7]. Our dataset provides more photo-realistic and less noisy images with specular highlights under
multiple lighting conditions.

Figure 5: Comparison with PBRS [7]. Our dataset provides more photo-realistic and less noisy images with specular highlights under
multiple lighting conditions.
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Figure 6: Comparison with SIRFS [1]. Using deep CNNs our method performs better disambiguation of reflectance from shading and
predicts better surface normals.



Figure 7: Comparison with CGI (Li et. al. [5]) on IIW dataset. In comparison with Li e al. [5], our method performs better
disambiguation of reflectance from shading and preserves the texture in the albedo.

Figure 8: Comparison with CGI (Li et. al. [5]) on CG-PBR (synthetic) dataset. In comparison with Li ef al. [5], our method performs
better disambiguation of reflectance from shading and preserves the texture in the albedo.



Figure 9: Evaluation of lighting estimation. We compare with Gardner et al. [3]. ‘GT+h.(-)" predicts lighting conditioned on the
ground-truth normals and albedo. ‘Ours+h. ()" predicts the environment map by conditioning it on the albedo and normals inferred by
IRN.
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Figure 10: Our Result. We show the estimated intrinsic components; normals, albedo, and lighting predicted by the network, along with
the reconstructed image with our direct renderer and the RAR.
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Figure 11: Ablation Study. We present the predicted albedo for each input image (in column 1) in column 2-6. We show the albedo
predicted by IRN trained on our CG-PBR only in column 2. In column 6 (‘Ours’) we show the albedo predicted by IRN finetuned on real
data with RAR and weak supervision over albedo. In column 4 and 5 we show the albedo predicted by IRN finetuned on real data without

weak supervision (‘w/o weak’) and RAR (‘w/o RAR’) respectively. We present the albedo predicted by IRN finetuned without RAR and
weak supervision on real data in column 3 (‘w/o weak + RAR’). More images in Figure 12.
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Figure 12: Ablation Study. We present the predicted albedo for each input image (in column 1) in column 2-6. We show the albedo
predicted by IRN trained on our CG-PBR only in column 2. In column 6 (‘Ours’) we show the albedo predicted by IRN finetuned on real
data with RAR and weak supervision over albedo. In column 4 and 5 we show the albedo predicted by IRN finetuned on real data without
weak supervision (‘w/o weak’) and RAR (‘w/o RAR’) respectively. We present the albedo predicted by IRN finetuned without RAR and
weak supervision on real data in column 3 (‘w/o weak + RAR’).



