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1. Optimization
At each scale, the weights of the generator and discriminator are initialized to those from the previous trained scale (except

for the coarsest scale or when changing the number of kernels, in which cases we use random initialization). We train each
scale for 2000 iterations. In each iteration we alternate between 3 gradient steps for the generator and 3 gradient steps for
the discriminator. We use the Adam optimizer [2] with a learning rate of 0.0005 (decreased by a factor of 0.1 after 1600
iterations) and momentum parameters β1 = 0.5, β2 = 0.999. The weight of the reconstruction loss is α = 10, and the
weight of the gradient penalty in the WGAN loss is 0.1. All LeakyReLU activations have a slope of 0.2 for negative values.
The generator’s last conv-block activation at each scale is Tanh instead of ReLU. The descriminator’s last conv-block at each
scale includes neither normalization nor activation. Training takes about 30 minutes on a 1080TI GPU for an image of size
256× 256 pixels, and the generation at test time is well under one second per image.

2. Boundary conditions and the effect of padding
The type of padding used within SinGAN’s generators highly influences the diversity among generated samples at the

corners (the net learns to associate the image structures at the corners with the artificial edges caused by the padding).
Figure 1 illustrates this effect by depicting the standard deviation among generated samples for each location in the image.
As can be seen, zero padding in each layer leads to very small variability at the corners. This effect is reduced when, instead
of padding within the layers, we zero-pad the inputs to the generator (both image and noise) by half the net’s receptive field
from each side. This is our default setting for generating samples. Finally, if the input image is zero-padded this way while
the input noise is padded by noise (i.e. taken to be larger), then the effect is further reduced. We use this configuration for
generating animations.
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Figure 1: Effect of padding. The padding configuration highly effects the diversity between samples at the corners. Zero
padding in each convolutional layer (layer padding) leads to only minor variability at the corners. Padding only the input
to the net (initial padding), leads to somewhat increased variability at the corners. Finally, padding by noise, leads to high
variability.



3. Failure cases
As stated in the main text, SinGAN may produce unrealistic results when the global structure of the image is of high

importance. However, we can avoid this by starting the generation process at a finer scale. Figure 2 demonstrates this for
face images. In this case, starting the generation at the coarsest scale results in extremely distorted images. However starting
the generation at a finer scale, we can preserve the face’s global structure while altering only finer details, like the shapes of
eyes, nose and lips, texture of the skin and eyebrows, etc.
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Figure 2: SinGAN for face images. Thanks to the multi-scale architecture, generation is possible also in extreme cases
like face images. In this case, when starting the generation at the coarsest scale (n=N), SinGAN produceŒŞ unrealistically
distorted face images. However, starting the generation at a finer scale (n = N − 1, n = N − 2), the global structure of the
face is preserved, and only finer details are generated.
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4. Effect of the injection scale for image manipulation
In all image manipulation tasks illustrated in the paper, we inject (a possibly downsampled version of) an image into the

generation pyramid at some scale n < N , and feed forward it through the generators up to the finest scale. This paradigm
is illustrated in Fig. 3, where a SinGAN trained on a single Zebra image, adds stripes to a horse injected at a coarse scale.
Different injection scales lead to different effects. We demonstrate this in Fig. 4 in the context of harmonization, paint-to-
image, and image editing. As can be seen, the coarser the injection scale, the larger the structures that SinGAN can modify
so as to match the statistics of patches in the generated image to the training image. Injection at fine scales, only modifies
small scale structures and textures, while leaving the global structure intact.

Output

Input Training Image

Injection scale

Figure 3: Image manipulation using SinGAN. Once a SinGAN model is trained, we can inject an image to one of its coarser
scales so as to match its patch distribution to that of the training image. In this example, we feed a downsampled version
of a horse image (bottom left) into the 7th scale of a 10-scale SinGAN model that was trained on a Zebra image (bottom
right). As the this input propagates through the generation pyramid, stripes are gradually added to the horse, which grant it
the appearance of a Zebra.
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Figure 4: Effect of the injection scale for image manipulation. In applications such as harmonization (top), paint-to-image
(middle), and editing (bottom), the coarser the scale we inject the input image, the larger the structures that get modified.
When the input is injected at fine scales, only the fine textures get modified while the global structure remains fixed.
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5. Animation from a single image
To animate a single image x, we introduce smooth random changes to SinGAN’s noise maps, while restricting them to

remain close to the noise maps that generate x. Those perturbations produce images with similar layout, and thus create a
sequence of images with gradually changed composition. Specifically, denoting by zn(t) the nth scale noise map at time t,
we construct our random walk as

zn(t+ 1) = αzrecn + (1− α)
(
zn(t) + zdiff

n (t+ 1)
)
,

zdiff
n (t+ 1) = β (zn(t)− zn(t− 1)) + (1− β)un(t)

where zn(0) = zrec
n and un(t) is a an iid sequence of noise maps having the same dimensions as zn(t). Here, α determines

how close the frames of the sequence remain to x, whereas β controls the smoothness and rate of change in the generated
clip. Note that similarly to the other image manipulation tasks, here as well we can start the animation from different scales
so as to obtain different effects. Please see the supplementary video for animation results.
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6. Random Samples

Training Image Random Samples
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Random SamplesTraining Image
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7. High Resolution Generation
SinGAN’s architecture is resolution agnostic and thus can handle images of arbitrarily high resolution. The larger an

image, the more scales we have, and each scale is only responsible for the finest details not accounted for by the previous
scale. Therefore, putting aside computation considerations, there is no resolution limit. Bellow are a few examples for
random samples generated by SinGAN models trained on 0.25Mpix images.

Generation of higher resolution samples does not necessarily require directly training SinGAN on image of the same
resolution. Instead, we can first train SinGAN on a lower resolution image, and then use our SR scheme to achieve the
desired final resolution (see Section 4 in the main paper). With this approach, we reduce both training time and memory
requirements and still achieve high quality generation results. Figure 5 shows 4Mpix random samples generated by SinGAN
when trained on a 0.25Mpix image. As can be seen, the new samples enhance the training image and contain new realistic
global structures and fine details.
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Training Image

Random samples
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Training Image

Random samples

12



Training image

Random samples + SR

Figure 5: Random 4Mpix samples generated by SinGAN. These are achieved by training SinGAN on a 0.25Mpix image,
generate random samples and then applying our SR scheme. Our model generates high quality, realistic samples by only
observing image content at 1/16 of the output resolution during training.
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8. Samples at arbitrary dimensions
Using SinGAN, we can generate samples of arbitrary size and aspect ratio. While this is superficially similar to retargeting,

the two tasks are distinct. We illustrate this below through comparison to seam carving [1]. In our case, the samples are
random and are not optimized to maintain salient objects or strong edges. This often leads to plausible configurations that do
not appear in the input image. In image retargeting, on the other hand, structures are typically restricted to those appearing
in the image, and may deform unrealistically at extreme aspect ratios.
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9. AMT Survey Images

Real Images (Randomly chosen from the “places” database )
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Fake Images, High Diversity Level
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Fake Images, Low Diversity Level
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10. Super-resolution

Input SRGAN EDSR DIP ZSSR SinGAN (Ours)
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Input SRGAN EDSR DIP ZSSR SinGAN (Ours)
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11. Harmonization

Training Image Input Image Deep Paint. Harmonization SinGAN (Ours)
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Training Image Input Image Deep Paint. Harmonization SinGAN (Ours)
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12. Editing

Training Example Edited Input Content Aware Move SinGAN (Ours)
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13. Paint to Image

SinGAN (Ours)Training Example Input Paint
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When the training image is very textured, SinGAN may produce less realistic results in the paint-to-image task. This is
because the conditional GANs at every scale n < N , are exposed to only textured images during training (those generated
by the previous scale), and thus are not guaranteed to produce high quality results when fed with a smooth clipart image,
as we do at test time. This effect can be somewhat countered by performing an additional short training phase of only the
generator at the injection scale. During this fine tuning phase, instead of inputting the upsampled outputs from the previous
scale, we input their quantized versions (which are more similar to cliparts). The generators at all other scales remain fixed.
An example result of this approach is presented in Fig. 6. As can be seen, SinGAN’s output in this case is more realistic.

Training Example Input Paint SinGAN SinGAN w\ quantization

Figure 6: Color quantization for paint to image. When retraining the injection scale to accept color quantized input images,
SinGAN manages to produce more realistic results in the paint-to-image task.
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14. Experimental Settings
The tables below report the settings used for each of the results presented in the main text as well as in this supplementary

material. For each application, we specify the scale in which the input image was injected and the total number of scales we
used for SinGAN’s generation pyramid.

Image Injection scale Total number of scales
Tree (also Fig. 2, main text) n = 1 N = 9

Two Dolphins (also Fig. 13, main text) n = 3 N = 9
Single Dolphin n = 3 N = 9

Fox n = 2 N = 8
Airplane n = 2 N = 8
Butterfly n = 2 N = 8

Eagle n = 2 N = 8
Spaceship (also Fig. 13, main text) n = 3 N = 8

Hat n = 4 N = 9
Lemon n = 3 N = 7

Cat n = 2 N = 8

Table 1: Harmonization.

Image Injection scale Total number of scales
Rock1 n = 5 N = 7
Rock2 n = 5 N = 7

Rock3 (also Fig. 12, main text) n = 5 N = 7
Tree n = 7 N = 9

Mountain n = 4 N = 8
Red cliff n = 5 N = 9

Hay n = 6 N = 9

Table 2: Editing.

Image Injection scale Total number of scales
Balloons1 n = 7 N = 9
Balloons2 n = 5 N = 9

Starry night n = 6 N = 8
Rock n = 6 N = 8
Tree n = 6 N = 8
Birds n = 5 N = 7

View (Fig. 2, main text) n = 7 N = 8
Pyramids (Fig. 11, main text) n = 6 N = 8

cows (Fig. 11, main text) n = 5 N = 7

Table 3: Paint to image.
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Image Random walk starting scale Total number of scales α β
Coral n = 5 N = 7 0.1 0.9

Corals and fish n = 6 N = 8 0.1 0.9
Water n = 8 N = 8 0.1 0.8
Bush n = 6 N = 8 0.1 0.9

Trees (slow wind) n = 6 N = 8 0.1 0.9
Trees (strong wind) n = 6 N = 8 0.1 0.8

Lightning n = 7 N = 7 0.1 0.9
Fog n = 5 N = 7 0.02 0.95

Fire1 n = 8 N = 8 0.2 0.6
Aurora n = 7 N = 8 0.1 0.9

Table 4: Single image animation. See supplementary video.
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