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Appendix A

In this section, we provide the architecture and ablation
study of encoder-distiller-decoder network, the benefit of
non-uniform kernel estimation across counting networks,
and additional qualitative examples of (i) our encoder-
distiller-decoder network, (ii) the effect of focus from seg-
mentation, focus from global density and our combined fo-
cus, and (iii) success and failure cases for six benchmark
datasets to better understand the benefits and limitations of
the proposed method.

A.l. Encoder-Distiller-Decoder Network

The proposed encoder-distiller-decoder network (Sec-
tion 3.4 in the main paper) is visualized in Fig. 1, and an
ablation study on it is elaborated next.

We perform an ablation study on ShanghaiTech Part_A
to analyze the encoder-distiller-decoder network configura-
tion. We vary the architecture by including and excluding
the distiller and decoder. When relying on the encoder and
distiller only, the predicted density maps are upsampled to
full resolution using bilinear interpolation. Results are in
Table 1.

Encoder-Distiller. Adding a distiller module on top of
the encoder reduces the MAE from 114.8 to 82.5. The dis-
tiller module fuses different features from multiple convo-
lution layers with varying dilation rates, which is beneficial
when counting multiple objects which appear in multiple
scales in the image.

Encoder-Decoder. A traditional encoder-decoder net-
work gives a better count than just encoder and an encoder-
distiller network. An encoder-only network would com-
press the target objects to smaller size resulting in loss of
fine details. Moreover, it produces density maps with a re-
duced resolution due to the downsample strides in the con-
volution operations. The distiller can compete with the de-
coder to some extent, but it cannot recover the spatial reso-
lution and important details as well as the decoder.

Encoder-Distiller-Decoder. Incorporating the distiller
in between an encoder and decoder into a single network
gives the best counting results on all metrics due to the mer-
its of both scale invariance and detail-preserving density
maps. In Fig. 2 we show qualitatively that the network ob-

tains a lower count error and generates higher quality den-
sity maps with less noise.

Table 1: Ablation study of encoder-distiller-decoder
network on ShanghaiTech Part_A. Incorporating the pro-
posed distiller module improves the performance of both an
encoder-only network and an encoder-decoder network.

Encoder-distiller-decoder Metrics
Encoder Distiller Decoder MAE RMSE
v 114.8 178.2
v v 82.5 140.6
v v 78.8 1374
v v v 74.8 131.0

A.2. Benefit of non-uniform kernel across counting
networks

Next, we study the benefit of our non-uniform kernel es-
timation for existing counting methods. Apart from our own
network, we also evaluate the benefit on two other count-
ing networks, i.e. [2] and [1], for which code is available.
Results in Table 2 demonstrate the proposed kernel has a
better MAE and RMSE performance than the commonly
used geometry-adaptive kernel [2] for all three networks. It
demonstrates our non-uniform kernel is independent of the
counting model.

A.3. Qualitative Results for Segment-, Density- &
Combined-Focus

To illustrate the beneficial effect of the proposed focuses
for reducing the counting error and suppressing background
noise, we refer to Fig. 3. As shown in Fig. 3 (c) and Fig.
3 (d) compared to Fig. 3 (b), both segmentation focus and
global-density focus show the ability to suppress noise and
reduce the counting error. The combination of these two
focuses leads to the lowest counting error and higher quality
density maps with less noise as shown in Fig. 3 (e).

A.4. Success and Failure Cases

We have showed some success and failure results (Sec-
tion 5.5 in the main paper). Finally we provide more quali-
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Figure 1: Encoder-distiller-decoder network. The network consists of convolution layers (C), residual blocks (R) and
deconvolution layers (D) with parameters (k x k,c, s, d), where k x k is the kernel size, ¢ is the number of channels, s
is the stride size and d is the dilation size. Each convolution layer is followed by a ReLU activation layer and a batch
normalization layer. The network is divided into several levels, such that all layers within a level have the same dilation and

spatial resolution. The bottom row visualizes the mean feature map from different levels. The distiller module integrates the
features from several encoder levels by attending to different parts of the image content for a better overall representation.

(Lr'9L'2x2)d
(L1'gL'exely
(L'Zp9‘exe)y
(L1 'p9'exed
(1L'Z'96'exe)y
(L1'96‘exe)y
(z'1'96‘exe)y
(z'1'96'exe)y
(¥1'96'exe)y
(¥'1'96'exe)y
(z'1'96‘exe)y
(z‘1'96'exe)y
(1'1'96'exe)y
(L1'96'exe)y
(11'96°ex€)D
(11'96°ex€)D
(11'96°ex€)D
(1'1'96°ex€)D
(LL'p9'exe)D
(L'1'po‘exe)d
(M 1ze‘exe)d
(L1ze‘exe)d

2
v
X
[
o
o
=
-

©
=y
o
-
=y

Level

Density Map

Table 2: Benefit of non-uniform kernel estimation on
ShanghaiTech Part_A. Relying on a ground truth density
map generated by the proposed kernel, rather than GAK [2],
lowers the counting error for our method as well as alterna-
tives.

Zhang et al. [2] Shietal. [1] This paper
MAE RMSE MAE RMSE MAE RMSE

GAK [2] 1102 1732 735 1123 679 115.6
This paper 107.0  156.5  71.7 109.5 652 1094

tative results on all six datasets. Even in challenging scenes
our method is able to achieve an accurate count, as shown
in the first two rows of Fig. 4, 5, 6, 7, 8 and 9. From the
failure cases, as shown in the last two rows of Fig. 4, 5, 6,7,
8 and 9, we can see that scenes with extremely dense small
objects are still a big challenge, opening up opportunities
for future work.
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Figure 2: Ablation study of encoder-distiller-decoder network. (a) Sample images from ShanghaiTech Part_A and (b)
predicted density map by encoder. Effect of (c) encoder-distiller and (d) encoder-distiller-decoder. For comparison, we show
the ground truth for each sample in (e).
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Figure 3: Effect of segment-, density- & combined-focus (a) Sample images from ShanghaiTech Part_A and (b) predicted
density map without focus. Effect of (c) focus from segmentation, (d) focus from global density, and (e) our combined focus.
For comparison, we show the ground truth for each sample in (f).



Figure 4: Qualitative results for ShanghaiTech PartA. (a) Sample images, (b) predicted density map, and (c) the ground
truth.
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Figure 5: Qualitative results for ShanghaiTech PartB. (a) Sample images, (b) predicted density map, and (c) the ground
truth.
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Figure 6: Qualitative results for TRANCOS. (a) Sample images, (b) predicted density map, and (c) the ground truth.



Figure 7: Qualitative results for DCC. (a) Sample images, (b) predicted density map, and (c) the ground truth.



Figure 8: Qualitative results for UCF-QNREF. (a) Sample images, (b) predicted density map, and (c) the ground truth.



Figure 9: Qualitative results for WIDER FACE. (a) Sample images, (b) predicted density map, and (c) the ground truth.



