
Probabilistic Face Embeddings

Yichun Shi and Anil K. Jain
Michigan State University, East Lansing, MI

shiyichu@msu.edu, jain@cse.msu.edu

A. Proofs
A.1. Mutual Likelihood Score

Here we prove Equation (3) in the main paper. For sim-
plicity, we do not need to directly solve the integral. Instead,
let us consider an alternative vector ∆z = zi − zj , where
zi ∼ p(z|xi), zj ∼ p(z|xj) and (xi,xj) are the pair of
images we need to compare. Then, p(zi = zj) , i.e. Equa-
tion (2) in the main paper, is equivalent to the density value
of p(∆z = 0).

The lth component (dimension) of ∆z, ∆z(l), is the sub-
traction of two Gaussian variables, which means:

∆z(l) ∼ N (µ
(l)
i − µ

(l)
j , σ

2(l)
i + σ

2(l)
j). (10)

Therefore, the mutual likelihood score is given by:

s(xi,xj)

= log p(zi = zj)

= log p(∆z = 0)

=

D∑
l

log p(∆z(l) = 0)

= − 1

2

D∑
l=1

(
(µ

(l)
i − µ

(l)
j)2

σ
2(l)
i + σ

2(l)
j

+ log(σ
2(l)
i + σ

2(l)
j))

− D

2
log 2π.

(11)

Note that directly solving the integral will lead to the same
solution.

A.2. Property 1

Let us consider the case that σ2(l)
i equals to a constant

c > 0 for any image xi and dimension l. Thus the mutual
likelihood score between a pair (xi,xj) becomes:

s(xi,xj)

= − 1

2

D∑
l=1

(
(µ

(l)
i − µ

(l)
j)2

2c
+ log(2c))− D

2
log 2π

= − c1
∥∥µi − µj

∥∥2 − c2,
(12)

where c1 = 1
4c and c2 = D

2 log(4πc) are both constants.

A.3. Representation Fusion

We first prove Equation (5) in the main paper. Assuming
all the observations x1,x2 . . .xn+1 are conditionally inde-
pendent given the latent code z. The posterior distribution
is:

p(z|x1,x2, . . . ,xn+1)

=
p(x1,x2, . . . ,xn+1|z)p(z)

p(x1,x2, . . . ,xn+1)

=
p(x1,x2, . . . ,xn|z)p(xn+1|z)p(z)

p(x1,x2, . . . ,xn+1)

=
p(x1,x2, . . . ,xn)p(xn+1)

p(x1,x2, . . . ,xn+1)

p(x1,x2, . . . ,xn|z)p(xn+1|z)p(z)

p(x1,x2, . . . ,xn)p(xn+1)

= α
p(x1,x2, . . . ,xn, z)p(xn+1, z)

p(x1,x2, . . . ,xn)p(xn+1)p(z)

= α
p(z|xn+1)

p(z)
p(z|x1,x2, . . . ,xn), (13)

where α is a normalization constant. In this case, α =
p(x1,x2,...,xn)p(xn+1)
p(x1,x2,...,xn+1)

.
Without loss of generality, let us consider a one-

dimensional case for the followings. The solution can
be easily extended to a multivariate case since all fea-
ture dimensions are assumed to be independent. It can be
shown that the posterior distribution in Equation (13) is
a Gaussian distribution through induction. Let us assume
p(z|x1,x2, . . . ,xn) is a Gaussian distribution with µ̂n and
σ̂2
n as mean and variance, respectively. Note that the initial

case p(z|x1) is guaranteed to be a Gaussian distribution.
Let µ0 and σ2

0 denote the parameters of the noninforma-
tive prior of z. Then, if we take log on both side of Equa-
tion (13), we have:

log p(z|x1,x2, . . . ,xn+1)

= log p(z|xn+1) + log p(z|x1,x2, . . . ,xn)− log p(z) + const

= − (z − µn+1)2

2σ2
n+1

− (z − µ̂n)2

2σ̂2
n

+
(z − µ0)2

2σ2
0

+ const

= − (z − µ̂n+1)2

2σ̂2
n+1

+ const.

(14)

1

where “const” refers to the terms irrelevant to z and

µ̂n+1 = σ̂2
n+1(

µn+1

σ2
n+1

+
µ̂n
σ̂2
n

− µ0

σ2
0

), (15)

1

σ̂2
n+1

=
1

σ2
n+1

+
1

σ̂2
n

− 1

σ2
0

. (16)

Considering σ0 →∞, we have

µ̂n+1 =
σ̂2
nµn+1 + σ2

n+1µ̂n

σ2
n+1 + σ̂2

n

, (17)

σ̂2
n+1 =

σ2
n+1σ̂

2
n

σ2
n+1 + σ̂2

n

. (18)

The result means the posterior distribution is a new Gaus-
sian distribution with a smaller variance. Further, we can
directly give the solution of fusing n samples:

log p(z|x1,x2, . . . ,xn)

= log[αp(z|x1)

n∏
i=2

p(z|xi)
p(z)

]

= (n− 1)log p(z)−
n∑
i=1

log p(z|xi) + const

= (n− 1)
(z − µ0)2

2σ2
0

−
n∑
i=1

(z − µi)2

2σ2
i

+ const

= − (z − µ̂n)2

2σ̂2
n

+ const.

(19)

where α =
∏n

i=1 p(xi)

p(x1,x2,...,xn)
and

µ̂n =

n∑
i=1

σ̂2
n

σ2
i

µi − (n− 1)
σ̂2
n

σ2
0

µ0, (20)

1

σ̂2
n

=
n∑
i=1

1

σ2
i

− (n− 1)
1

σ2
0

. (21)

Considering σ0 →∞, we have

µ̂n =

n∑
i=1

σ̂2
n

σ2
i

µi, (22)

σ̂2
n =

1∑n
i=1

1
σ2
i

. (23)

B. Implementation Details

All the models in the paper are implemented using Ten-
sorflow r1.9. Two and Four GeForce GTX 1080 Ti GPUs
are used for training base models on CASIA-Webface [10]
and MS-Celeb-1M [1], respectively. The uncertainty mod-
ules are trained using one GPU.

B.1. Data Preprocessing

All the face images are first passed through MTCNN
face detector [7] to detect 5 facial landmarks (two eyes,
nose and two mouth corners). Then, similarity transforma-
tion is used to normalize the face images based on the five
landmarks. After transformation, the images are resized to
112 × 96. Before passing into networks, each pixel in the
RGB image is normalized by subtracting 127.5 and dividing
by 128.

B.2. Base Models

The base models for CASIA-Webface [10] are trained
for 28, 000 steps using a SGD optimizer with a momentum
of 0.9. The learning rate starts at 0.1, and is decreased to
0.01 and 0.001 after 16, 000 and 24, 000 steps, respectively.
For the base model trained on Ms-Celeb-1M [1], we train
the network for 140, 000 steps using the same optimizer
settings. The learning rate starts at 0.1, and is decreased
to 0.01 and 0.001 after 80, 000 and 120, 000 steps, respec-
tively. The batch size, feature dimension and weight decay
are set to 256, 512 and 0.0005, respectively, for both cases.

B.3. Uncertainty Module

Architecture The uncertainty module for all models
are two-layer perceptrons with the same architecture:
FC-BN-ReLU-FC-BN-exp, where FC refers to fully
connected layers, BN refers to batch normalization lay-
ers [2] and exp function ensures the outputs σ2 are all pos-
itive values [3]. The first FC shares the same input with
the bottleneck layer, i.e. the output feature map of the last
convolutional layer. The output of both FC layers are D-
dimensional vectors, where D is the dimensionality of the
latent space. In addition, we constrain the last BN layer to
share the same γ and β across all dimensions, which we
found to help stabilizing the training.

Training For the models trained on CASIA-
WebFace [10], we train the uncertainty module for
3, 000 steps using a SGD optimizer with a momentum of
0.9. The learning rate starts at 0.001, and is decreased to
0.0001 after 2, 000 steps. For the model trained on MS-
Celeb-1M[1], we train the uncertainty module for 12, 000
steps. The learning rate starts at 0.001, and is decreased
to 0.0001 after 8, 000 steps. The batch size for both cases
are 256. For each mini-batch, we randomly select 4 images
from 64 different subjects to compose the positive pairs
(384 pairs in all). The weight decay is set to 0.0005 in all
cases. A Subset of the training data was separated as the
validation set for choosing these hyper-parameters during
development phase.

Base Model Representation LFW YTF CFP-FP IJB-A

Original 97.70 92.56 91.13 63.93Softmax +
Center Loss [8] PFE 97.89 93.10 91.36 64.33

Original 96.98 90.72 85.69 54.47Triplet [5] PFE 97.10 91.22 85.10 51.35
Original 97.12 92.38 89.31 54.48A-Softmax [4] PFE 97.92 91.78 89.96 58.09
Original 98.32 93.50 90.24 71.28AM-Softmax [6] PFE 98.63 94.00 90.50 75.92

Table 1: Results of CASIA-Net models trained on CASIA-WebFace.
“Original” refers to the deterministic embeddings. The better performance
among each base model are shown in bold numbers. “PFE” uses mu-
tual likelihood score for matching. IJB-A results are verification rates at
FAR=0.1%.

Inference Speed Feature extraction (passing through the
whole network) using one GPU takes 1.5ms per image.
Note that given the small size of the uncertainty module,
it has little impact on the feature extraction time. Matching
images using cosine similarity and mutual likelihood score
takes 4ns and 15ns , respectively. Both are neglectable in
comparison with feature extraction time.

C. Results on Different Architectures
Throughout the main paper, we conducted the experi-

ments using a 64-layer CNN network [4]. Here, we evaluate
the proposed method on two different network architectures
for face recognition: CASIA-Net [10] and 29-layer Light-
CNN [9]. Notice that both networks require different image
shapes from our preprocessed ones. Thus we pad our im-
ages with zero values and resize them into the target size.
Since the main purpose of the experiment is to evaluate the
efficacy of the uncertainty module rather than comparing
with the original results of these networks, the difference
in the preprocessing should not affect a fair comparison.
Besides, the original CASIA-Net does not converge for A-
Softmax and AM-Softmax, so we add an bottleneck layer to
output the embedding representation after the average pool-
ing layer. Then we conduct the experiments by comparing
probabilistic embeddings with base deterministic embed-
dings, similar to Section 5.1 in the main paper. The results
are shown in Table 1 and Table 2. Without tuning the archi-
tecture of the uncertainty module nor the hyper-parameters,
PFE still improve the performance in most cases.

References
[1] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and

Jianfeng Gao. Ms-celeb-1m: A dataset and benchmark for
large-scale face recognition. In ECCV, 2016. 2

[2] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 2

[3] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? In NIPS,
2017. 2

Base Model Representation LFW YTF CFP-FP IJB-A

Original 97.77 92.34 90.96 60.42Softmax +
Center Loss [8] PFE 98.28 93.24 92.29 62.41

Original 97.48 92.46 90.01 52.34Triplet [5] PFE 98.15 93.62 90.54 56.81
Original 98.07 92.72 89.34 63.21A-Softmax [4] PFE 98.47 93.44 90.54 71.96
Original 98.68 93.78 90.59 76.50AM-Softmax [6] PFE 98.95 94.34 91.26 80.00

Table 2: Results of Light-CNN models trained on CASIA-WebFace.
“Original” refers to the deterministic embeddings. The better performance
among each base model are shown in bold numbers. “PFE” uses mu-
tual likelihood score for matching. IJB-A results are verification rates at
FAR=0.1%.

[4] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
Raj, and Le Song. Sphereface: Deep hypersphere embedding
for face recognition. In CVPR, 2017. 3

[5] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015. 3

[6] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Ad-
ditive margin softmax for face verification. IEEE Signal Pro-
cessing Letters, 2018. 3

[7] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A
discriminative feature learning approach for deep face recog-
nition. In ECCV, 2016. 2

[8] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A
discriminative feature learning approach for deep face recog-
nition. In ECCV, 2016. 3

[9] Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. A light cnn
for deep face representation with noisy labels. IEEE Trans.
on Information Forensics and Security, 2015. 3

[10] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning
face representation from scratch. arXiv:1411.7923, 2014. 2,
3

