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det. frames  non-det. frames  Overall
ToyCar3 789 241 259
Room4 561 124 139
Placeltems 611 89 107
TeddyHandover 772 142 164
SlidingClock 759 188 208

Table 1. Average runtimes per frame in ms on the dynamic se-
quences of the Co-Fusion dataset [[1]. The runtimes on detection
frames include not only Mask R-CNN inference but also creation
and updates of object maps.

In this document, we provide additional performance
numbers for our method as well as an explanation of the
accompanying video.

1. Runtimes

In Table [T} we report average runtimes per frame on the
dynamic sequences from Co-Fusion [[1]. One can clearly
see that the runtime for detection frames is much higher
than on the frames where only tracking and mapping with
our probabilitic data association is run. The overhead in
detection frames amounts to more than just the inference
runtime of Mask R-CNN (which has been reported around
200ms/frame or SHz [2]]), since we also allocate new object
volumes in these frames or match and update existing ones.
Note that this implementation is not yet tuned for compu-
tational efficiency. Note further, that the ToyCar3 dataset
has a resolution of 960 x 540 pixels while all other datasets
are capture at a resolution of 640 x 480 pixels. The higher
runtime in ToyCar3 is thus partly due to the fact that more
data needs to be processed per frame.

2. Varying detection rates

Table [2] shows an ablation study of how varying the
detection rate for Mask R-CNN affects trajectory accu-
racy, trajectory coverage, and the number of detected non-
moving objects. The coverage is computed as the percent-
age of frames in the sequence for which our approach main-
tained a model for the object. Note that by this measure,

100% cannot be achieved for most objects since they are
not visible in all frames. Note further, that in ToyCar3, the
static airplane is always detected and instantiated as an ob-
ject which is why there is always at least one non-moving
object detected in this scene.

The clear and intuitive tendency is that trajectory cov-
erage improves with increased detection rate but this also
creates more spurious detections instantiating objects. If
the detection frequency is too low, some objects might be
missed. This happenes for the second car in ToyCar3 and
the horse in Room4 when we run the detection only every
60 frames (s. Table[2](a), (b)).

Interestingly, while a larger trajectory coverage can in-
duce higher AT-RMSE (since more frames can deviate from
the ground truth), we do not observe this as a clear tendency.
For most objects, the AT-RMSE remains at a very similar
level. In some cases, such as for Car2 in ToyCar3, the AT-
RMSE even improves with increased trajectory coverage.

3. Accompanying Video

The accompanying video shows several results on dy-
namic scenes. It displays RGB images for reference, the
object detections that are used to instantiate new objects,
the rendered output maps with gray background model and
color-coded object instances, as well as association weights
for a selection of objects. Note that the color frames are not
directly used as input for tracking and mapping, but only for
generation of instance masks. Tracking and mapping only
uses depth images from the RGB-D data.

The first five scenes show result on sequences from the
Co-Fusion dataset [1]. Additionally we show results on
f3w_xyz from the TUM RGB-D benchmark [3] as a proof of
concept for robust camera tracking (visualization of “per-
son” models disabled). Note that persons violate the rigid-
ness assumption of our approach. Thus, the models that
are maintained for them are not very accurate. This leads to
some artifacts and floating surfaces being integrated into the
background volume. These are removed once valid back-
ground depth data is available.
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Table 2. Ablation study with varying detection rates. (a) Average trajectory (AT) RMSE when running detections every 1, 15, 30, or 60
frames. (b) Trajectory coverage for these setups. (c) Number of non-moving objects detected in these cases.
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