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A. Proofs for Exact Recovery of K-best solu-
tion

In this section, we present a formal proof of the exact
recovery condition of K-best solution.

A.1. Randomized Exact Recovery Conditions

We begin with reviewing the random noise model for
generating the K-best solution. A graph G = (I, E) is a
random graph G = (I, pe, pg) if E meets the follow two
conditions:

• Independently and identically for any vertices i and j,
Pr [(i, j) ∈ E ] = pe;

• For any edge (i, j) ∈ E and 1 ≤ k ≤ K, indepen-
dently with probability pg

K , PS(T inij T
?
i1) = PS(T ?jk).

As the underlying object possesses a symmetry group of
size K, the second condition implies that with equal prob-
ability an edge (i, j) picks one of the K possible ground-
truth transformations from Σi to Σj , and with probability
1− pg it is initially incorrectly estimated.

The key idea of the proof is to divide our algorithm into
an exploration stage and a final stage. In the exploration
stage, our algorithm seeks to reach all input objects from the
root object. The final stage assumes all input objects have
been visited and our algorithm proceeds until termination.
In particular, we will show that under the proposed exact
recovery conditions the majority of the propagated transfor-
mations are correct after the exploration stage. Then the
final stage iteratively corrects the remaining incorrect prop-
agated transformations.

Let us introduce a few notations. Based on the iteration
exploretime(Ii) when an object Ii is explored for the first
time, e.g., v(t)

i 6= 0 if and only if t ≥ exploretime(Ii), we
can divide I into subgroups Γ0,Γ1,Γ2, ...,ΓD, where

Γj = {I|I ∈ I, exploretime(I) = j},
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and D = D(G) is defined as the diameter of G, which is
the maximum of shortest paths from every pair of vertices.
Note that Γj can be viewed as the set of vertices of height
j on the breadth-first-search tree(BFS-Tree) of G rooted by
the first vertex I1.

We define the correct rate functionCorr(j)(I ′) on a sub-
set of vertices I ′ to be

Corr(l)(I ′) =

∑
Ii∈I′

# of correct estimations in T (l)
i∑

Ii∈I′
# of estimations in T (l)

i

.

To avoid comprehensive notations, we will replace some
of the constant variables in the analysis of our main article
by a constant number. The definition of random graph
in the proof of exact recovery conditions is also slightly
different in definition for simplification of the proof without
affecting its correctness, because δ is considered only a
small perturbation of pe. Since we will apply Chernoff
bound several times, we always use η to denote the small
constant in the standard expression of Chernoff bound
independently every time.

Exploration stage. The exploration stage consists of
the first D iterations of transformation propagation and
clustering in our algorithm, where still some of the objects
remain unexplored. We show that under certain conditions
on parameters pe and pg of random graphs, the graph can
meet the requirement of convergence in the final stage,
despite that Corr(t)(

⋃
j≤t Γj) may decrease during the

exploration stage for 0 ≤ t ≤ D.

Lemma A.1. (Lemma 3 and Corollary 8 in [5]) For a ran-
dom graph G(I, pe, pg) with |I| = n, if pe = n

1
d−ε−1

for constants d > 3 and 0 < ε < 1, then with proba-
bility higher than 1 − e−n the diameter of G is D = d.
Moreover, with probability higher than 1 − n−11 for every
1 ≤ i ≤ d− 1,

3

4
(pen)j < |Γj | <

5

4
(pen)j

when n is sufficiently large.
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This lemma implies that almost surely the following
properties hold as G satisfies the conditions stated above:

• Constant Diameter: The diameter of the graph is
upper-bounded by a constant;

• Top Domination: The size of the highest level on the
BFS-Tree, Γd, dominates the sum of all the other lev-
els, which is only of order n

d−1
d−ε ;

• Weak Downward Connection: For any vertex Ix, if
Ix ∈ Γj , 1 ≤ j ≤ d, it is possible that only one neigh-
bor of Ix is in Γj−1, and this one is guaranteed by the
definition of Γ. Moreover, if j < d then most of Ix’s
neighbors are in Γj+1, otherwise if j = d they are in
Γd.

Lemma A.2. (Convergence rate of exploration stage) If
E satisfies the condition of a random graph G(I, pe, pg),
where pe = n

1
d−ε−1 for constants d > 3 and 0 < ε < 1,

and moreover, pg satisfies

pg > 0.75
1
d ,

then almost surely for every Γj , Corr(j)(Γi) ≥ 0.75.

Proof. We first give a proof of a tighter upper-bound on
Corr(j)(Γj) by induction. We show that with high proba-
bility Corr(j)(Γj) ≥ (1− η)pgCorr

(j−1)(Γj−1) for every
1 ≤ j ≤ d, where 0 < η < 1 is a small constant.

• j = 0: There is only one vertex, I1, in Γ0, and by
definition it is always perfectly aligned with the coor-
dinate system of itself after the identity transformation,
Corr(0)(Γ0) = 1;

• j = t: We randomly pick a vertex Ix from Γt and one
of its neighbor Iy in Γt−1.

– Case 1: Iy is the only vertex in Γt−1 connected
to Ix. In this case K-sparse(v(t)

x ) = v(t)
x . If the

edge between Ix and Iy is correctly estimated ini-
tially then Corr(t)(Ix) = Corr(t−1)(Iy), other-
wise Corr(t)(Ix) may decrease to 0. By the def-
inition of random graph, Iy can be any vertex in
Γt−1 with equal probability, and the expectation
of Corr(t)(Ix) can be derived as:

E[Corr(t)(Ix)] = pgCorr
(t−1)(Γt−1);

– Case 2: There are multiple vertices connected
to Ix in Γt−1. Let the number of correct and
incorrect pose estimations of Iy after iteration
t − 1 be r = r(Iy) and w = w(Iy), e.g.,
Corr(t−1)(Iy) = r

w+r . If edge (x, y) is cor-
rect, the expected number of votes a correct es-
timation Ti ∈ T (t)

i of Ix may receive from Iy

is r
K since the edge is uniformly randomly cho-

sen from K possible correct ones. Meanwhile,
the expected number of votes an incorrect estima-
tion T ′i ∈ T (t) of Ix receives has a tight upper-
bound w

K because for any incorrect estimation
Tj ∈ T (t−1)

j of Iy , among the K possible cor-
rect choices of edge at most one of them can map
Tj to T ′i . Fix Ix and sum up all choices of Iy , we
derive the expected numbers of votes a correct
estimation of Ix receives and an incorrect esti-
mation receives:

Ex[corr] =
∑
Iy

r(Iy)

K
pg

Ex[incorr] =
∑
Iy

w(Iy)

K
+
r(Iy)

K
(1− pg).

As the number of neighbors Iy increases, the ra-
tio between these two expectations will always
concentrate to

pgCorr
(t−1)(Γt−1)

1− pgCorr(t−1)(Γt−1)
,

which means as long as pgCorr(t−1)(Γt−1) >
0.5, the more neighbors Ix have in Γt−1, the
more likely there will be a gap between the num-
ber of votes a correct estimation receives and the
number of votes an incorrect estimation receives
and we will discuss this gap in detail in the proof
of lemma A.4. Thus more correct estimates will
survive after K-sparse operation;

In combination of the two cases above, we have

E[Corr(t)(Ix)] ≥ pgCorr(t−1)(Γt−1).

To minimize E[Corr(t)(Γt)], any vertex Ix in Γt
should have only one neighbor in Γt−1, which is rea-
sonable under the weak downward connection prop-
erty, and we reach a lower bound on E[Corr(t)(Γt)]:

inf E[Corr(t)(Γt)] = pgCorr
(t−1)(Γt−1).

Apply Chernoff bound under this case, we have

Pr
[
Corr(t)(Γt) ≤ (1− η)pgCorr

(t−1)(Γt−1)
]

≤ exp

(
−1

2
η2|Γt|pgCorr(t−1)(Γt−1)

)
,

where η is any constant between 0 and 1. From lemma
A.1 and the top domination property, with high proba-
bility every Γj , 1 ≤ j ≤ d has size of at least the order
of n

1
d−ε , and thus with high probabilityCorr(t)(Γt) >

(1− η)pgCorr
(t−1)(Γt−1).



By applying union bound on every j > 0, we have that
with high probability (e.g., of order at least 1−exp(−n 1

d )),
Corr(j)(Γj) > (1 − η)pgCorr

(j−1)(Γj−1) holds true for
every 1 ≤ j ≤ d.

We the substitute pg > 0.75
1
d in, let η satisfy (1 − η)pg ≥

0.75
1
d :

Corr(j)(Γj) > pdg(1− η)dCorr(0)(Γ0) ≥ 0.75,

and this finishes the proof.

Final stage. The final stage consists of all the iterations
after iteration D until the transformation propagation and
clustering step finishes. We will show in the following part
that under certain conditions with high probability a random
graph G(I, pe, pg) converges to a perfect recovery (e.g., all
theK underlying ground-truths are recovered for any object
other than I1).

We start with a more specifically defined weak-
downward-connection property:

Lemma A.3. (Weak downward connection) If E satisfies
the condition of a random graph G(I, pe, pg), where pe =

n
1
d−ε−1 for constants d > 3 and 0 < ε < 1, then with high

probability for any Ix ∈ I, the following properties always
hold:

1. Ix has more than 0.9n
1
d−ε neighbors;

2. if Ix ∈ Γj where j > 0, then no more than 0.1% of its
neighbors are in Γj−1;

3. if Ix ∈ Γj where j < n, then no more than 0.1% of its
neighbors are in Γj .

Proof.
1. For any y 6= x, the probability that Iy is a neighbor of Ix
is pe. We simply apply Chernoff bound on all possible Iy:

Pr[Ix has less than 0.9n
1
d−ε neighbors]

≤ exp
(
−0.005n(

1
d−ε )

)
,

and then apply union bound on Ix:

Pr[All vertices have more than 0.9n
1
d−ε neighbors]

≥ 1− n exp
(
−0.005n(

1
d−ε )

)
;

2. Now we know that Ix has more than 0.9n
1
d−ε neighbors,

and with high probability there are no more than 5
4n

j
d−ε ver-

tices in Γj−1. Besides the ”compulsory” neighbor from the

definition of Γ, when we randomly choose another neighbor
Iy of Ix, the probability that Iy ∈ Γj−1 is

Pr[Iy ∈ Γj−1] =
|Γj−1| − 1

d∑
i=j−1

|Γi|
≤ |Γj−1|
|Γj |

≤ 5

3
n−

1
d−ε .

Therefore, the expected number of neighbors Iy 6∈ Γj−1 is
of constant order, and

Pr[
|{Iy ∈ Γj−1}|
|{Iy}|

> η] ≤ exp
(
−0.45η2n

1
d−ε

)
for positive constant η arbitrarily small. Again by applying
union bound, we have the second claim proved.

3. We prove this claim with a similar argument as
in the proof of the second one. Instead of evaluating
Pr[Iy ∈ Γj−1], we consider Pr[Iy ∈ Γj ]:

Pr[Iy ∈ Γj ] ≤
|Γj |
|Γj+1|

≤ 5

3
n−

1
d−ε

and the remaining proof is straightforward.

Lemma A.4. If E satisfies the condition of a random graph
G(I, pe, pg), where pe = n

1
d−ε−1 for constants d > 3 and

0 < ε < 1, then with high probability all vertices in Γd are
perfectly recovered after iteration d+ 1, and will always be
perfectly recovered in every iteration after.

Proof. From lemma A.2 we know that when the explo-
ration stage finishes after iteration d, we end up with
Corr(d)(Γd) ≥ 0.75 and also for any Ix ∈ Γd,
E[Corr(d)(Ix)] ≥ 0.75. Also from lemma A.3 we know
a dominant majority of Ix’s neighbors are in Γd. First we
only consider neighbors Iy of Ix in Γd. We denote this
neighborhood subset as Nd(Ix). In iteration d + 1, every

T (d)
y propagates |T (d)

y | candidates to T (d+1)

x , thus T (d+1)

x

receives ∑
(y,x)∈E

T (d)
y ≥ Nd(Ix) ≥ 0.999n

1
d−ε

votes in total. For a fixed T ∈ T gtx , the probability that a
vote is for T is

pg
K?

Corr(d)(Nd(Ix)).

SinceNd(Ix) are randomly chosen from Γd, we can replace
Corr(d)(Nd(Ix)) by Corr(d)(Γd) when computing the ex-
pectation. Again the total number of votes T receives will
concentrate near

pg
K?

Corr(d)(Γd)
∑

(y,x)∈E

T (d)
y



with probability 1− exp(−O(1)n
1
d−ε ).

Similarly, the total number of votes a non-ground-truth
transformation T ′ of Ix receives will concentrate below(

1

K?
− pg
K?

Corr(d)(Γd)

) ∑
(y,x)∈E

T (d)
y

with probability 1− exp(−O(1)n
1
d−ε ).

We have now quantified the gap between the num-
ber of votes a ground-truth transformation receives and
a non-ground-truth transformation receives. Apply union
bound on all the |Γd|K estimations of vertices in Γd,
with probability at least 1 − |Γd|K

1
d−ε exp(−O(1)n

1
d−ε ),

Corr(d+1)(Γd) = 1, which is still high.
It is trivial to show that Γd will remain perfectly recov-

ered after iteration d + 1 because Corr(l)(Γd) = 1 > 0.75
for every l > d.

Lemma A.5. If E satisfies the condition of a random graph
G(I, pe, pg), where pe = n

1
d−ε−1 for constants d > 3 and

0 < ε < 1, then with high probability all vertices in Γj
remain perfectly recovered after iteration 2d + 1 − j, for
any 0 ≤ j ≤ d.

Proof. A proof by induction is straightforward as lemma
A.4 gives the proof of the boundary case where j = d. Now
we assume all vertices in Γ(j+1) are perfectly recovered af-
ter iteration j + 1. For any Ix in Γj , lemma A.3 implies
that most of its neighbors are perfectly recovered because
they are in Γj+1. We simply apply the concentration bounds
as in the proof of lemma A.4. We denote a polynomial of
n,K?, d as poly(n,K?, d), and after running the transfor-
mation propagation and clustering algorithm for O(d) iter-
ations, it ends up with a exact recovery of all vertices with
high probability 1− poly(n,K?, d) exp(−O(1)n

1
d−ε ).

To sum up, we combine lemma A.1, A.2, A.3, A.4, A.5
and state part 1) of our main theorem here, which is slightly
different from the one in our main article only in the nota-
tion of constants:

Theorem A.1. If the input data follows the random noisy
model described above, and suppose pe = n

1
d−ε−1 for con-

stants d > 3 and 0 < ε < 1, and moreover, pg satisfies

pg > 0.75
1
d

. Then almost surely, after l = O(d) iterations, T (l)
i recov-

ers all the K? underlying ground-truth transformations of
partial object Ii for every 2 ≤ i ≤ n.

A.2. Exact Recovery of K?

We divide this section into two parts. In the first part,
we provide a concise proof about our approach on the exact
recovery ofK?. In the second part, we provide an empirical
study on the robustness of the proposed approach.
Proof of the exact recovery of K?. Under the noise model
described in the main paper, we have that when K ≤ K?,
score(T out(K), T in

pair) ∈ [
n2pepg
K? − O(n),

n2pepg
K? + O(n)]

with overwhelming probability. When K ≥ K? + 1,
score(T out(K), T in

pair) ∈ [
n2pepg
K − O(n),

n2pepg
K + O(n)]

with overwhelming probability. Thus, it is easy to see that
the largest gap happens at K = K?, which ends the proof.

Ours Base 1) Base 2)
ShapeNetCoreSym 95% 65% 75%

ScanNetSym 90% 70% 70%

Table 1: Exact recovery rate.

Robustness of our approach. We compared our approach
with two alternative approaches described in the main pa-
per, i.e., 1) run the propagation operation without cluster-
ing for several iterations and then determine K from the
propagated transformations, and 2) run the propagation-
and-clustering procedure with a sufficient large K ′ > K
and then determine K from the final output. As shown in
the insect table to the right, our approach is more accurate
than these two alternative approaches for recovering the un-
derlying symmetries.

B. Proof of Theorem 4.2
The proof of Theorem 4.2 comes from the stability of

the leading eigenspace of a matrix that possesses a spectral-
gap under random perturbation of matrices. To begin with,
we consider the K-order cyclic group CK = {CK,i ∈
RK×K , 1 ≤ i ≤ K}. For example, when K = 3,

C3,1 =

 1 0 0
0 1 0
0 0 1

 , C3,2 =

 0 1 0
0 0 1
1 0 0

 ,

C3,3 =

 0 0 1
1 0 0
0 1 0


Now let us consider a symmetric block-wise random matrix
X ∈ RnK×nK . The diagonal blocks are identify, i.e.,

Xii = Ik, 1 ≤ i ≤ n.

Each off-diagonal block follows the following noisy model
independently:

Xij =


0 w.p, 1− pepg

CK,1 w.p. pepg(
1
K + δ)

CK,i w.p. pepg(
1
K −

δ
K−1 ) for each i

(1)



ShapeNetCoreSym (K-Best) ScanNetSym (K-Best) ShapeNetCore (Single-Best) ScanNet (Single-Best)
Rotation Trans. Rotation Trans. Rotation Trans. Rotation Trans.

3◦ 30◦ Mean 0.05 0.25 Mean 3◦ 30◦ Mean 0.05 0.25 Mean 3◦ 30◦ Mean 0.05 0.25 Mean 3◦ 30◦ Mean 0.05 0.25 Mean

Input[14] 41.4 76.1 24.5 34.1 61.2 0.36 32.5 51.1 41.2 31.9 51.1 0.69 42.1 62.1 39.1 24.8 52.8 0.65 19.8 38.0 69.9 12.5 29.3 1.35
MRF-SFM[9] 51.5 84.6 12.1 45.1 78.1 0.19 32.1 62.3 31.6 36.5 64.3 0.42 47.8 81.1 13.7 31.2 55.9 0.48 33.6 55.9 36.3 22.7 35.1 0.81
IRLS[6, 11] 42.5 78.3 25.2 32.3 65.2 0.40 34.2 53.1 35.5 33.2 55.1 0.65 51.1 79.1 20.5 31.0 61.2 0.45 31.1 51.0 45.4 24.5 36.7 0.78
RobustAlign[7] 42.7 79.2 23.2 33.4 67.3 0.37 34.4 52.2 34.5 34.2 57.2 0.64 52.3 78.5 22.5 31.2 63.3 0.39 33.8 50.5 43.4 24.7 38.4 0.70
Our approach 67.2 91.3 6.7 49.3 80.1 0.17 41.1 84.4 19.6 38.5 67.3 0.29 51.8 87.1 9.7 36.2 58.9 0.24 39.6 63.9 21.3 26.7 39.4 0.56
Kgt 69.9 95.1 5.8 53.3 86.1 0.15 44.5 87.3 16.9 40.2 70.1 0.26 55.3 89.8 15.2 39.4 61.9 0.21 40.6 66.1 19.1 28.7 42.1 0.52
3×binsize 59.2 88.3 8.9 42.5 78.4 0.21 35.1 80.1 22.6 32.7 65.4 0.32 47.9 84.9 11.5 33.4 56.4 0.27 35.3 60.8 22.9 25.2 38.1 0.59
2×binsize 65.1 90.2 6.5 48.1 79.3 0.18 39.6 83.3 20.1 36.8 65.7 0.30 50.7 86.2 9.9 34.7 57.3 0.25 38.1 62.7 22.9 24.9 38.1 0.57
0.5×binsize 70.2 90.4 6.5 48.8 79.2 0.16 44.3 82.3 18.9 39.1 66.4 0.30 52.4 86.7 9.9 38.1 58.2 0.24 40.1 64.9 20.5 28.6 40.4 0.58
Vary-root ±4.7 ±3.1 ±0.3 ±4.5 ±2.7 ±0.02 ±3.2 ±2.5 ±0.5 ±5.1 ±2.8 ±0.02 ±3.8 ±3.1 ±0.3 ±4.1 ±2.7 ±0.01 ±3.3 ±2.9 ±0.4 ±3.5 ±2.2 ±0.02
Bernard et al 30.7 60.8 21.8 38.3 65.4 0.29 27.1 58.4 30.3 28.2 57.3 0.41 52.5 79.4 13.8 23.4 54.2 0.42 25.8 49.3 35.1 15.9 34.4 0.81
Arrigoni et al 28.2 63.1 20.1 40.1 73.2 0.26 32.3 65.1 26.3 29.2 62.6 0.37 44.2 70.2 16.8 23.2 59.1 0.44 29.3 56.7 31.1 18.1 36.3 0.76
Birdal et al 34.2 64.1 19.2 43.1 77.1 0.23 27.6 60.7 29.3 30.1 58.5 0.38 43.7 68.9 17.1 19.7 58.1 0.45 30.2 57.5 29.5 20.5 39.2 0.69
SE-Sync 28.1 57.9 23.4 41.1 72.3 0.25 28.7 57.5 33.3 23.7 55.7 0.43 42.8 67.8 17.9 25.4 62.5 0.38 29.4 59.1 28.4 22.1 39.3 0.67
Torsello et al 24.2 55.2 26.1 39.2 67.8 0.29 26.5 53.1 35.3 21.3 53.9 0.48 39.5 66.1 21.9 22.9 58.4 0.45 27.8 54.9 32.4 17.5 38.3 0.73

Table 2: Benchmark evaluation on our approach and baseline approaches. The columns labeled as 3◦, 30◦, 0.05 and 0.25 tell the portion
of the algorithm output that is within these error bracket. The columns labeled as ’mean’ tell the mean rotation error or the translation error.
Our approach outperforms the three methods that we are comparing with.

5 10 15 20 25 30

AngularDeviation (Degrees)

20

40

60

80

100

%
 S

ca
ns

ShapeNetCoreSym-Rotation

ours
Arrigoni et al
Bernard et al
Birdal et al
IRLS
MRF-SFM
RobustAlign
SESync
Torsello et al

5 10 15 20 25 30

AngularDeviation (Degrees)

20

40

60

80

100

%
 S

ca
ns

ScanNetSym-Rotation

ours
Arrigoni et al
Bernard et al
Birdal et al
IRLS
MRF-SFM
RobustAlign
SESync
Torsello et al

5 10 15 20 25 30

AngularDeviation (Degrees)

20

40

60

80

100

%
 S

ca
ns

ShapeNetCore-Rotation

ours
Arrigoni et al
Bernard et al
Birdal et al
IRLS
MRF-SFM
RobustAlign
SESync
Torsello et al

5 10 15 20 25 30

AngularDeviation (Degrees)

20

40

60

80

100

%
 S

ca
ns

ScanNet-Rotation

ours
Arrigoni et al
Bernard et al
Birdal et al
IRLS
MRF-SFM
RobustAlign
SESync
Torsello et al

0.05 0.10 0.15 0.20 0.25

Distance (m)

20

40

60

80

100

%
 S

ca
ns

ShapeNetCoreSym-Translation
ours
Arrigoni et al
Bernard et al
Birdal et al
IRLS
MRF-SFM
RobustAlign
SESync
Torsello et al

0.05 0.10 0.15 0.20 0.25

Distance (m)

20

40

60

80

100

%
 S

ca
ns

ScanNetSym-Translation
ours
Arrigoni et al
Bernard et al
Birdal et al
IRLS
MRF-SFM
RobustAlign
SESync
Torsello et al

0.05 0.10 0.15 0.20 0.25

Distance (m)

20

40

60

80

100

%
 S

ca
ns

ShapeNetCore-Translation
ours
Arrigoni et al
Bernard et al
Birdal et al
IRLS
MRF-SFM
RobustAlign
SESync
Torsello et al

0.05 0.10 0.15 0.20 0.25

Distance (m)

20

40

60

80

100

%
 S

ca
ns

ScanNet-Translation
ours
Arrigoni et al
Bernard et al
Birdal et al
IRLS
MRF-SFM
RobustAlign
SESync
Torsello et al

Figure 1: Cumulative distribution functions of our approach and baseline approaches on the four benchmark datasets:
ShapeNetCorSym, ScanNetSym, ShapeNetCore and ScanNet.

where w.p. stands for with probability.
It should be noted that matrixX essentially redefines the

data matrix that is used to compute the single-best solution.
Specifically, the rows and columns correspond the the K
possible solutions of each object, and matrix X essentially
encode the association between theK best solutions and the
input maps.

Now let us calculate the expectation of each block, which
gives

E[Xij ] = 0(1− pepg) + (
1

K
− δ

K − 1
)11T +

K

K − 1
δIk

= pepg(
1

K
− δ

K − 1
)11T +

Kδpepg
K − 1

Ik.

It follows that the top K eigenvectors of E[X] is given
by 1n ⊗ Ik, and the top K + 1 eigenvalues are

pepg(
1

K
+δ)n, pepg

Kδ

K − 1
n, · · · , pepg

Kδ

K − 1
n, 1, · · · , 1, ...

It is clear that there is a spectral-gap between the k-th and
k + 1-th eigenvalues of E[X]. Now consider X is a pertur-
bation from E[X], since for each block

‖Xij − E[Xij ]‖ ≤ 1.

It follows that the leading eigenspace spanned by the top
K eigenvectors of X is well-approximately by 1n ⊗ Ik.
Specifically, from Lemma 4.1 of[2], we have the following
stability proposition



Lemma B.1. Let U ∈ RnK×K denotes the leading K
eigenvectors of X . With ei we denote canonical basis vec-
tor, then there exist universal constants C1 and C2 and a
unitary matrix R ∈ O(K) such that

max
1≤i≤n

‖(eTi ⊗ Ik)(U − 1n ⊗R)‖ ≤ 1√
n
C1

√
n log(n)

Kδ
K−1npepg

.

(2)
with probability at least 1−O( 1

nC2
).

Note that LemmaB.1 essentially extends the L∞ stabil-
ity results of random matrix perturbations to the setting of
block matrices.

Since LemmaB.1 provides a universal L∞ bound, it fol-
lows that when projecting e1 onto the space spanned by
U , i.e., UUTe1, each block of UUTe1 is bounded from
1
n (1n1

T
n ) ⊗ e1 element-wise by 2 ≤ 1√

n
C1

√
n log(n)

Kδ
K−1npepg

. In

other words, we applying the element-wise to obtain the

single-best solution, under the condition that
√
n log(n)

Kδ
K−1npepg

=

o(1), then the solution obtained by the leading eigen-vector
agrees with the underlying ground-truth. This ends the
proof.

C. Additional Quantitative Evaluations
Table 2 and Figure 1 present additional quantitative com-

parisons between our approach and five additional baseline
approaches: Bernard et al.[3], Arrigoni et al.[1], Birdal et
al.[4], SE-Sync[12], and Torsello et al.[13]. The evaluation
protocol remains the same, namely, on ShapeNetCoreSym
and ScanNetSym, we compare against the K-best solutions,
and on ShapeNetCore and ScanNet, we compare against the
single-best solution. Note that Birdal et al.[4] output a prob-
ability distribution over the space of synchronizations. We
compare against the most-provable solution (c.f.[4]).

These additional baseline approaches are based on con-
vex relaxations, spectral relaxations and MAP-based in-
ferences. As a result, their performance appears to be at
best similar to the three baseline approach considered in
the main paper, namely, MRF-SFM[10], IRLS[6, 11] and
RobustAlign[8].
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