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In this supplementary material, we first present a detailed
analysis of relationships between our proposed batch-wise
maximum-value perfect (MVP) matching based loss and
other related loss objectives for metric learning. Then, we
show a full batch-wise (i.e., 32 × 32) visualization of the
exclusive hard positive and negative pairs selected via the
MVP matching.

1. Relationships with Related Loss Objectives
In this section, we theoretically discuss the relationships

between the proposed MVP matching based loss and other
recently developed metric learning loss objectives. We sim-
plify all well-known losses into a unified batch-wise form
for fair comparison and clear demonstration.

We assume that each batch has n samples from p random
classes (i.e., person identities), and samples c images from
each category. Thus, each batch contains p× c images.

1.1. Contrastive Loss

The batch-wise version of contrastive loss [3] can be re-
formulated as:

Lcontrastive =

n∑
i,j

[yijdij + (1− yij)max (0, εdiff − dij)]

=
n∑
i,j

Tij (YijDij + (1− Yij)Dij)

=

n∑
i,j

TijD
+
ij +

n∑
i,j

TijD
−
ij ,

(1)
where the label yij ∈ {0, 1} indicates whether the pair
of (xi,xj) is from the same class. The margin parameter
εdiff imposes a margin between dissimilar samples. The
weighted matrix Tij for mining hard samples is an all-ones
matrix in the contrastive loss. The D+

ij and D−
ij are the dis-

tances between similar and dissimilar pairs, respectively.

1.2. Triplet Loss

The batch-wise triplet loss [1] can be reformulated as
following:

Ltrp =

n∑
i,j,k|si=sj ,si 6=sk

[Dij −Dik + εtrp]+
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]
+
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]
+
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TijD
−
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(2)
where [·]+ = max(·, 0) the margin parameter εtrp denotes
a margin threshold in the triplet loss. It can be regarded
as the relative distance which is the difference between
the absolute distance of negative samples εidiff and posi-
tive samples εisame. Therefore, the constraint condition is
εidiff − εisame = εtrp. For each positive pair, it has (n− c)
choices to select the corresponding negative pair. Thus, if
each sample in the batch is regarded as an anchor, c(n− c)
triplets could be structured. Hence, the sample imbalance
ratio is c

n−c in this type of loss objective.

1.3. Batch Hard Triplet Loss

The batch hard triplet loss [4] can be reformulated as:

LBHT =

n∑
i

[
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Figure 1: Visualization of an exclusive hard positive and negative pair selected via the batch-wise (i.e., 32 × 32 correspondence) MVP
matching from a batch of samples. The leftmost image is the anchor sample, and the right is a batch of samples (with batch size 32). For
each anchor image, the hard similar positive and dissimilar negative images selected by the MVP matching are marked with yellow and
red borders, respectively. Please also refers to the electronically edition (2 × 2 enlargement in PDF) for better visual effect.



where the term of batch hard means to select the hard-
est positive and negative pairs in a batch. Therefore, the
weighted matrix Tij is a sparse matrix. Each row of the
matrix has only two non-zero elements with the value of 1.
But each column may appear many ones.

1.4. Quadruplet Loss

The batch-wise form of quadruplet loss [2] could be re-
formulated as:

Lquad =

n∑
i,j,k|si=sj ,si 6=sk

[Dij −Dik + εtrp]+

+

n∑
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[Dij −Dlk + εquad]+
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X
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X = C2
n−c − (p− 1)C2

c

Y = (p− 2)C2
c ,

(4)

where the margin parameter εijdiff is a threshold of distances
among dissimilar pairs of the sample i and j in the quadru-
plet loss. The function C is a combination function. Ac-
cording to combinatorial mathematics, each negative pair
has (p − 2)C2

c positive pairs and each positive pair has
C2

n−c−(p−1)C2
c corresponding negative pairs to construct

a quadruplet. This type of loss can be considered as fine-
tuning on Ltriplet with the help of second and third term in
Equation (4) which provide re-margin and re-weight. How-
ever, the re-weight matrix Tij does not consider hard posi-
tive mining and sample balance. The imbalance ratio is X

Y .

1.5. Lifted Loss

The lifted loss [5] without smooth max function could be
transformed as:

Llifted =
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This type of loss can be viewed as a t-triplet, where t is
the number of positive samples in a batch. Each row of the
weighted matrix Tij in Llifted has 2t non-zero elements
with value 1. The half of 1-elements is located accord-
ing to positive distance matrix D+

ij , and the remaining t

1-elements is determined by negative distance matrix D−
ij .

Actually, each mini batch has t positive pairs and (C2
n − t)

negative pairs. Therefore, the lifted loss just considers sam-
ple balance but does not contain hard positives mining.

1.6. N-pair Loss

N-pair loss [6] proposes an (N+1)-tuplet, where N is
#classes in a tuplet. It needs pairs with a unique class label
to build such a tuplet and thus has limitations in practice. It
does not do hard-mining, and T is an all-one matrix.

1.7. Batch-wise Optimal Transport Loss

The batch-wise optimal transport loss [8] could be for-
mulated as

LOT =
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The batch-wise optimal transport loss is inspired by the op-
timal transport programming [7]. It can utilize all available
semantical information within training batches and learn an
importance weighted matrix Tij via the Sinkhorn’s algo-
rithm. The optimal weighted matrix is a probability distri-
bution. However, this loss may encounter that the similar
positive pairs with small distances would still be optimized
(i.e., overtraining). Moreover, it does not consider the sam-
ple balance issue, and the imbalance ratio is c/(n− c).

1.8. Brief Summary

The innovations of above mentioned metric learning loss
objectives could be summarized in the following aspects
including the definition of distance metric or margin, re-
weighting hard samples, and sampling balance between
positives and negatives.

Our proposed batch-wise MVP matching based loss ob-
jective take these three points into consideration compre-
hensively. Unlike the batch hard triplet loss, the optimal
MVP matching T ∗ is a re-weighting matrix, where each
row and column has only two non-zero values. This means
the MVP matching will not favor any sample and can avoid
the outliers to dominate the training process. Conversely,
the batch hard triplet loss just guarantee each row has only
two non-zero values. However, lots of non-zero values may
appear in the same column (i.e., pick the same hard sample)
when encountering outliers. These outliers may dominate



gradient and lead to model collapse during training. Thus,
the MVP loss makes the training process more stable and
hard samples mining more balanced.

2. Visualization of Hard Sample Pairs
In our proposed MVP matching based loss objective, 4

images (i.e., c images) resized to 256 × 128 from each of
8 (i.e., p categories) persons are picked randomly to con-
struct a 32-size batch. The visualization of results is shown
in Figure 1. An interesting note is that the hard similar pos-
itive pairs selected via the MVP matching within a batch
are often with the intensive appearance variations, e.g., hu-
man poses, scale, and viewpoints, while the hard dissimilar
negative pairs are usually with the similar appearance.
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