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1. Qualitative Results and Failure Cases
We show more qualitative results on the wild Internet

data to demonstrate the generality of our method. As shown
in the Figure 1, our model can recover faithful details and
wrinkles only various challenging cases, even our training
data has limited clothes styles, age and gender group (e.g.,
without women and children). Some failure cases are shown
in the Figure 2. Our model have difficulties in dealing with
loose clothes, unseen poses, or ambiguous poses.

2. Depth Refinement
Nehab et al. [1] formulate the depth refinement with

surface normals as an energy minimization problem and
achieve a good result. But its solution requires computing
the inverse of a large sparse matrix, which is not suitable
for neural networks. We re-formulate this problem with an
iterative solution. Here are the details of our derivation.

Depth refinement aims to find a depth map conforming
to the initial result and a normal map. Following Nehab et
al. [1], we compute the depth map by minimizing the sum
of two errors, the depth error Ez and the normal error En:

E = λEz + (1− λ)En, (1)

where λ is a hyper-parameter to balance the two terms.
The depth error computes the difference between the final
estimated depth and the initial depth, i.e.

Ez =
∑
i

||Zi − Z0
i ||2, (2)

where Zi and Z0
i are the estimated and initial depth at the

i-th pixel. The normal term En requires normals to be per-
pendicular to the surface tangent directions:

En =
∑
i

[Ti ·Ni]
2 (3)

where Ni and Ti are the surface normal and tangent direc-
tions of the i-th pixel respectively. In our case, the surface
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normal direction is a fixed input, the tangent direction is cal-
culated from a set of neighboring pixels. Thus, the normal
error is:

En =
∑
i

∑
j∈Ni

||Njx(Xj −Xi) +Njy(Yj − Yi) +Njz(Zj − Zi)||2+

||Nix(Xi −Xj) +Niy(Yi − Yj) +Niz(Zi − Zj)||2

(4)

Here, (Nix, Niy, Niz) and (Xi, Yi, Zi) are the normal and
position of the i-th pixel. Ni contains the four neighbor-
ing pixels of i. We compute the surface tangents by both
forward (i→ j) and backward differentiation (j → i).

To minimize the energy functionE, we iteratively update
Zi by fixing the depths of Zj for all j ∈ Ni. Specifically,
Zi can be computed as,

Zn+1
i = λZ0

i + (1− λ)
∑

j∈Ni

(
Zn
ij + Zn

ji

)
8

, (5)

where Zij is the depth of i that makes the edge ij and Nj

perpendicular, and Zji is the depth of i that makes ij and
Ni perpendicular. Specifically, these two can be computed
as,

Zn
ij =

Njx(X
n
j −Xn

i ) +Njy(Y
n
j − Y n

i ) +NjzZ
n
j

Njz
,

Zn
ji =

Nix(X
n
j −Xn

i ) +Niy(Y
n
j − Y n

i ) +NizZ
n
i

Niz
.

(6)

where (Xn
i , Y

n
i , Z

n
i ) and (Xn+1

i , Y n+1
i , Zn+1

i ) are the 3D
positions of the pixel i in the n-th and n + 1-th iterations
respectively.

3. Normal Evaluation
We compare our Normal-Net with the network in Zhang

et al.[2] which is finetuned on our dataset. In Table 1, it
shows that our method outperforms the method in Zhang
et al. [2] regarding all different metrics. Several qualitative
results are also given in the Figure 3.
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Figure 1. Additional results on Internet data. For each example, from left to right, these images are: the single input RGB image, estimated
normal and final depth.

Figure 2. Some failure cases on Internet data. The subfigures are arranged in the same way as in Figure 1.

Method Accuracy Error
11.25◦ 22.5◦ 30◦ Mean Median

Our method 26.60 63.52 78.18 21.94 17.79
Zhang et al. [2] 22.28 56.23 72.33 24.07 20.20

Table 1. Accuracy and Mean/Median normal errors of different
methods.
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