
Boundless: Generative Adversarial Networks for Image Extension -
Supplementary Material

1. Network Training and Architecture Details

1.1. Generator Network G

Layer ID Type Act. K S D Out Skip
1 Gated Conv ELU[2] 5 1 1 32 None
2 Gated Conv ELU 3 2 1 64 None
3 Gated Conv ELU 3 1 1 64 None
4 Gated Conv ELU 3 2 1 128 None
5 Gated Conv ELU 3 1 1 128 None
6 Gated Conv ELU 3 1 1 128 None
7 Gated Conv ELU 3 1 2 128 None
8 Gated Conv ELU 3 1 4 128 None
9 Gated Conv ELU 3 1 8 128 None

10 Gated Conv ELU 3 1 16 128 None
11 Gated Conv ELU 3 1 1 128 5
12 Gated Conv ELU 3 1 1 128 4
13 Resize (2x) n/a n/a n/a n/a n/a n/a
14 Gated Conv ELU 3 1 1 64 3
15 Gated Conv ELU 3 1 1 64 2
16 Resize (2x) n/a n/a 1 n/a n/a n/a
17 Gated Conv ELU 3 1 1 32 1
18 Gated Conv ELU 3 1 1 16 None
19 Conv None 3 1 1 3 None
20 Clip n/a n/a n/a n/a n/a n/a

Table 1. The generator architecture. Act. stands for activation
type, K stands for kernel size, S for stride, D for dilation, Out for
number of channels in convolutional layers and number of units
in fully connected units, and Skip represents the layer-id which is
concatenated into the output of the given layer. All resize opera-
tions use bilinear interpolation. In the Generator, all convolutional
layers use ’Same’ padding.

1.2. Discriminator Network D

The discriminator applies spectral normalization [5] at
all layers, and consists of the the common tower (DN , Ta-
ble 2), which feeds into the non-conditional branch (fN ,
Table 3) and projection discriminator branch (fC , Table
4). These two branches produce scalars, which are then
summed to produce a single network output. We invite the
reader to see Section 3 of the main paper for more in depth
discussion of the model.

The scalar outputs of the main and projection discrimi-
nator are summed and passed to the adversarial loss.

Common Tower DN

Layer ID Type Act. K S Padding Out Size
1 Conv LeakyReLU[4] 5 2 Same 64
2 Conv LeakyReLU 5 2 Same 128
3 Conv LeakyReLU 5 2 Same 256
4 Conv LeakyReLU 5 2 Same 256
5 Conv LeakyReLU 5 2 Same 256
6 Conv LeakyReLU 5 2 Same 256
7 Conv LeakyReLU 5 1 Valid 256
8 Flatten n/a n/a n/a n/a n/a

Table 2. The base of the discriminator. It takes generated and
ground truth images as input. Act. stands for activation type, K
stands for kernel size, S for stride, Out for number of channels in
convolutional layers and number of units in fully connected units.

Non-Conditional Branch fN

Layer ID Type Act. Out Size
1 Fully Connected No Bias None 1

Table 3. The non-conditional branch of the discriminator, taking
the common tower from Table 2 as input and outputting a single
scalar value. Act. stands for activation type.

Projection Discriminator Branch fC

Layer ID Type Act. Out Size
1 Normalize None 1000
2 Fully Connected No Bias None 256
3 Inner Product w/Common Tower None 1

Table 4. The projection discriminator [6] branch of the network.
The input is logits of a pretrained classification network, for which
we used an InceptionV3 [7] network trained on ImageNet [3]. The
output is a single scalar, which is summed with the output of the
non-conditional branch and passed to the hinge loss.

1.3. Training details:

We take the training set of Places365-Challenge dataset
[9], select the top 50 classes by number of samples, and
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create a holdout validation set from this. This creates about
39,000 training and 930 test samples per class, for a total
training set size of 1,953,624 and testing set size of 46376.
The classes selected are:

• amusement park
• aquarium
• athletic field
• baseball field
• bathroom
• beach
• bridge
• building facade
• car interior
• church - indoor
• church - outdoor
• cliff
• coast
• corridor
• dining room
• embassy
• forest
• forest path
• golf course
• harbor
• highway
• industrial area
• lagoon
• lake
• lighthouse
• living room
• lobby
• mansion
• mountain
• ocean
• office building
• palace
• parking lot
• pier
• pond
• porch
• railroad track
• rainforest
• river
• skyscraper
• stadium
• staircase
• swamp
• swimming hole
• swimming pool
• train station
• underwater
• valley
• vegetable garden
• water park

Before passing the training image into the generator we
resize the image to 257 x 257, and also concatenate the
mask channel. The mask size is randomly sampled from
a uniform distribution, which is the target size plus/minus 4
pixels, so the model doesn’t overfit to a specific mask size.

Following the code of DeepFill [8], we concatenate a
channel of 1’s to the input of the generator. This enables
the generator to see the edge of the image after 0 padding
the inputs, although we do not verify this in this work.

We take generator and discriminator steps in a 1:1 ratio,
with the steps executed jointly.

Please see Section 3 of the main paper for more discus-
sion of the loss and optimizer.

2. Qualitative Results

We show additional samples from on the 25%, 50%,
and 75% mask image extension experiments, and refer the
reader to Figures 2, 3, and 4. We also show additional
results from in-painting experiment in Figure 5 and more
panorama results in Figure 6.We also demonstrate the suit-
ability of our method on freeform masks in Figure 1.

Input Our method Ground Truth

Figure 1. Results on freeform masks.

3. Exploring the Space of Plausible Extensions

We invite the reader to view the accompanying video
derived from a sample from the YouTube8m dataset
[1] at https://drive.google.com/file/d/
1x6FCYPmoqSuCdeLJTD0UpQ_MQhBPv7_e/view?
usp=sharing. Please refer to the main paper for
details on how it was created. We encourage the reader to
pause the video at arbitrary frames to see how the model
produces different plausible completions as the result of
tiny perturbations of the original frame.

4. Failure Cases

In Figure 7 we examine some of the failure modes of our
image extension model. We note that our model is much
better at textures than objects; for example vehicles, people,
and furniture are challenging for the model. Addressing this
is left to future work.

https://drive.google.com/file/d/1x6FCYPmoqSuCdeLJTD0UpQ_MQhBPv7_e/view?usp=sharing
https://drive.google.com/file/d/1x6FCYPmoqSuCdeLJTD0UpQ_MQhBPv7_e/view?usp=sharing
https://drive.google.com/file/d/1x6FCYPmoqSuCdeLJTD0UpQ_MQhBPv7_e/view?usp=sharing


Input CAF DeepFill PConv NoCond Ours GT

Figure 2. Extending images from masks which are 25% of the image width. We note that edges and structure are better defined in our
method. For instance, edge of the roof in the second row.
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Figure 3. Extending images from masks which are 50% of the image width.
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Figure 4. Extending images from masks which are 75% of the image width.
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Figure 5. Center Inpainting.



Input Panorama Input Panorama

Figure 6. Additional panorama results



Input CAF DeepFill PConv NoCond Ours GT

Figure 7. Failure cases. The network struggles with objects; especially cars, humans, and furniture.
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