
Supplementary Material for
KPConv: Flexible and Deformable Convolution for Point Clouds

Abstract

This supplementary document is organized as follows:

• Sec. 1 details our network architectures, the training
parameters, and compares the model sizes and speeds.

• Sec. 2 presents the kernel point initialization method.

• Sec. 3 describes how our regularization strategy tack-
les the “lost” kernel point phenomenon.

• Sec. 4 enumerates more segmentation results with class
scores.

• KPConv Method video1 illustrates KPConv principle
with animated diagrams, and shows some learned ker-
nel deformations.

• KPConv Results video2 shows indoor and outdoor
scenes segmented by KP-FCNN.

1. Network Architectures and Parameters
As explained in the main paper, our architectures are

built with convolutional blocks, designed like bottleneck
ResNet blocks [6]. This is the case whether we use a nor-
mal or strided KPConv, with rigid or deformable kernels.
Figure 1 describes these blocks, and Figure 2 our two net-
work architectures made from them. In Figure 2, we show
an example of point cloud from ModelNet40 dataset, sub-
sampled at every layer. It illustrates how the convolution
radius (red sphere) grows proportionally to the subsampling
grid size. In all our experiments with deformable KPConv,
we use deformable kernels in the last 5 convolutional blocks
(2nd block from layer 3, and both block from layer 4 and 5).
The green number above layers in Figure 2 are the feature
dimensions used in our blocks (D in Figure 1).

Our layers process point clouds of variable sizes, so we
cannot stack them along a new “batch” dimension. We thus
stack our point and feature tensors along their first dimen-
sion (number of points). As the neighbor and pooling in-
dices do not point from one input cloud to another, each

1https:// www.youtube.com/ watch?v=uwuvp9mc 0o&t=19s
2https:// www.youtube.com/ watch?v= cFQxJorSAI

batch element is processed independently without any im-
plementation trick. We only need to keep track of the batch
element indices in order to define the global pooling of KP-
CNN. Since the number of points can vary a lot, we use a
variable batch size by selecting as many elements as possi-
ble until a certain number of total of batch points is reached.
This limit is chosen so that the average batch size corre-
spond to the target batch size. A very similar batch strategy
has already been described by [7].
KP-CNN training. We use a Momentum gradient Descent
optimizer to minimize a cross-entropy loss, with a batch
size of 16, a momentum of 0.98 an initial learning rate of
10−3. Our learning rate is scheduled to decrease exponen-
tially, and we choose the exponential decay to ensure it is
divided by 10 every 100 epochs. A 0.5 probability dropout
is used in the final fully connected layers. The network con-
verges in 200 epochs. In the case of deformable kernels, the
regularization loss is added to the output loss with a multi-
plicative factor of 0.1.
KP-FCNN training. We also use a Momentum gradient
Descent optimizer to minimize a point-wise cross-entropy
loss, with a batch size of 10, a momentum of 0.98 an ini-
tial learning rate of 10−2. The same learning rate schedule
is used and no dropout is used. Among all experiments,
the network needs 400 epochs at most to converge. For

Figure 1. Convolutional blocks used in our architectures. Both
rigid (top) and deformable (bottom) KPConv use resnet con-
nections, batch normalization and leaky ReLU. Optional blocks:
shortcut max pooling(1) is only needed for strided KPConv, and
shortcut 1x1 convolution(2) is only needed when Din 6= 2D.

https://www.youtube.com/watch?v=uwuvp9mc_0o&t=19s
https://www.youtube.com/watch?v=_cFQxJorSAI


Figure 2. Illustration of our 2 network architectures for segmentation (top) and classification (bottom) of 3D point clouds. During a
forward pass, features are transformed by consecutive operations (represented by edge colors) while points are fed to each layer as a
support structure guiding the operations.

real scene segmentation, we can generate any number of in-
put spheres, so we define an epoch as 500 optimizer steps,
which is equivalent to 5000 spheres seen by the network.
The same deformable regularization loss is used.
Model sizes and speeds. Table 1 shows the statistics of
our models on different datasets. First we notice that KP-
FCNN and KP-CNN have similar number of parameters,
because the decoder part of KP-FCNN only involves light
1x1 convolution. We see that the running speeds are dif-
ferent from one dataset to another, which is not surprising.
Indeed, the number of operations performed during a for-
ward pass of our network depends on the number of points
of the current batch, and the maximum number of neigh-

MN40 SNP Scannet Sem3D

Avg pts/elem 6800 2370 8950 3800
Avg pts/batch 109K 38K 90K 38K

Params rigid 14.3M 14.2M 14.1M 14.1M
deform 15.2M 15.0M 14.9M 14.9M

Training rigid 3.5 5.5 4.3 8.8
(batch/s) deform 3.1 4.3 3.9 7.1

Inference rigid 8.7 16.7 9.3 17.5
(batch/s) deform 8.0 12.2 8.1 15.0

Table 1. Model statistics on 4 datasets: ModelNet40, ShapeNet-
Part, Scannet, Semantic3D.

bors of these points. Our models have been prototyped with
a RTX 2080Ti in this experiment, which explains the slight
difference with the Titan Xp used in the main paper.

2. Kernel Points Initialization
Our KPConv operates in a ball, and requires kernel

points regularly placed in this domain. There is no obvi-
ous regular disposition of points in a sphere, so we chose to
solve this issue by translating it into an optimization prob-
lem. The problem is simple, we want the K points x̃k to be
as far from each other as possible inside a given sphere. We
thus assign a repulsive potential to each point:

∀x ∈ R3, Erep
k (x) =

1

‖x− x̃k‖
(1)

And add an attractive potential to the sphere center to avoid
them diverging indefinitely:

∀x ∈ R3, Eatt(x) = ‖x‖2 (2)

The problem then consists of minimizing the global energy:

Etot =
∑
k<K

Eatt(x̃k) +
∑
l 6=k

Erep
k (x̃l)

 (3)

The solution is found by gradient descent with the points
initialized randomly and some optional constraints. In our
case, we fix one of the points at the center of the sphere. For



Figure 3. Illustration of the kernel points in stable dispositions.

some values of K (listed in Table 2), the points converge to
a unique stable disposition. Those stable dispositions are
in fact regular polyhedrons. Each polyhedron can be de-
scribed by grouping points sharing a plane perpendicular to
the polyhedron symmetrical axis. For a better understand-
ing, some of these dispositions are shown in Figure 3.

In every layer of KP-CNN and KP-FCNN, the points lo-
cations are rescaled from the chosen stable disposition to
the appropriate radius and randomly rotated. Note that Etot

can also be used as a regularization loss in KP-CNN, when
the kernel point positions are trained.

K
disposition groups along

name symmetrical axis

5 Tetrahedron
7 Octahedron 1-4-1
13 Icosahedron 1-5-5-1
15 - 1-6-6-1
18 - 1-5-5-5-1
19 - 1-4-4-4-4-1
21 - 1-6-6-6-1
25 - 4-4-4-4-4-4

Table 2. Stable dispositions of the kernel point positions when the
center point is fixed. If a disposition has an axis of symmetry,
we describe it by the successive groups of points sharing a plane
perpendicular to this axis.

3. Effect of the Kernel Point Regularization

When we designed deformable KPConv, we first used
a straightforward adaptation of image deformable convolu-
tions, but the network had very poor performances. We in-
vestigated the kernel deformations after the network conver-
gence and noticed that the kernel points were often pulled
away from the input points. This phenomenon comes from
the sparse nature of point clouds, there is empty space
around the points. We remind that the shifts are predicted
by the network, thus, they depend on the input shape.

For a particular input during training, if a kernel point
is shifted away from the input points, then the gradient of
its shift ∆k(x) is null. It is thus “lost” by the network
and remains away for similar input shapes. Because of the
stochastic nature of the network optimizer, this happens for
many input shapes during convergence.

Figure 4. Illustration of the deformations learned by a KPConv
network with or without regularization.



Figure 4 illustrates “lost” kernel points on the example
of a room floor. First we see the rigid kernel in red, its scale
gives an idea of the kernel points influence range. In the
middle, the purple points depict a deformed kernel predicted
by a network without any regularization loss. Most purple
points are far from the floor plane and thus “lost”.

Our regularization strategy, described in the main paper,
prevents this phenomenon, as shown in the bottom of Figure
4. We can notice that our regularization strategy does not
only prevent the “lost” kernel points. It also helps to max-
imize the number of active kernel points in KPConv (those
with input points in range). Almost every yellow point is
close to the floor plane.

4. More Segmentation Results
In this section, we provide more details on our seg-

mentation experiments, for benchmarking purpose with fu-
ture works. We give class scores for our experiments on
ShapeNetPart (Table 3) and S3DIS (Tables 4 and 5) dataset.
Scannet [2], Semantic3D [5] and NPM3D [15] are online
benchmarks, the class scores can be found on their respec-
tive website.
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Table 5. Semantic segmentation IoU scores on S3DIS k-fold. Additionally, we give the mean class recall, a measure that some previous
works call mean class accuracy.
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