
Supplementary materials for paper:
Learning an event sequence embedding for dense event-based deep stereo.

Stepan Tulyakov
Space Engineering Center at

École Polytechnique Fédérale de Lausanne
stepan.tulyakov@epfl.ch

Francois Fleuret
École Polytechnique Fédérale de Lausanne

and Idiap Research Institute
francois.fleuret@idiap.ch

Martin Kiefel, Peter Gehler, Michael Hirsch
Amazon Research Tuebingen

{mkiefel, pgehler, hirsch}@amazon.de

1. Network architecture

The architecture of the proposed stereo network is shown
in Table 3. In this network, the temporal aggregation can
be implemented as either a hand-crafted function, a tempo-
ral convolutional network or the continuous fully-connected
layer as described in the paper in §2.2. The best-performing
architecture of the temporal convolutional network is shown
in Table 1. The best-performing architecture of the kernel
network in the continuous fully-connected layer is shown in
Table 2. The temporal convolutional network and the con-
tinuous fully-connected layer performs best with an event
queue with a capacity of κ = 7 events and a time hori-
zon of τ = 0.5 seconds, while the hand-crafted aggregation
performs best with an event queue of infinite capacity and
a time horizon of τ = 0.2 seconds. All best-performing
architectures were selected based on experiments with shal-
low stereo network from [3].

Table 1. Architecture of the best-performing temporal convolu-
tional network. The convolutions are computed without padding.
The network takes as an input an event queue of size 2×7×h×w
and produces an event image of size 64×h×w. By using 3d con-
volutions with a kernel size of 3×1×1 (instead of 1d convolutions
with a kernel size of 3), we can process the entire event queue. The
network has 25k parameters in total.

Layer Description Output Size
3D conv. 2× 3× 1× 1× 64 ◦ ReLU 64×5×h×w
2 × 3D conv. 64× 3× 1× 1× 64 ◦ ReLU 64×3×h×w
3D conv. 64× 3× 1× 1× 64 ◦ ReLU 64× h× w

2. Training parameters

In our experiments, all networks are trained for 12
epochs using the full-sensor event sequences, without aug-

Table 2. Architecture of the best-performing kernel network in the
fully-connected continuous layer. The network takes as an input
event timestamps of size 1× 7× h×w from the event queue and
produces a weights tensor of size 64×7×h×w. By using 3d con-
volutions with kernel 1× 1× 1 instead of a fully-connected layer
we can process the entire event queue. The network has 12.5k
parameters in total.

Layer Description Output Size
3D conv. 1× 1× 1× 1× 64 ◦ ReLU 64×7×h×w
2 × 3D conv. 64× 1× 1× 1× 64 ◦ ReLU 64×7×h×w
3D conv. 64× 1× 1× 1× 64 64×7×h×w

mentation. The learning rate is set to 0.1 for the hand-
crafted temporal aggregation, 10−4 for the temporal con-
volutional network. In the experiment with the continuous
fully-connected layer the learning rate is 10−3 for the kernel
network and 10−4 for the rest of the network. In all cases
the learning rates are kept fixed for 8 epochs and then are
halved every 2 epochs.

3. Kernel network initialization

For the kernel network we developed a custom initializa-
tion. Usually network weights are initialized using a nor-
mal distribution N

(
0, 2

Nl+Nl−1

)
, where Nl−1 and Nl are

the numbers of inputs and outputs respectively. This ini-
tialization is called Xavier initialization [1] and it ensures
that the variances of network activations and parameter gra-
dients are kept constant across all layers. Since the ker-
nel network essentially produces weights of the continuous
fully-connected layer, we initialize its parameters such that
its output is normally distributed. This is done computation-
ally by sampling weights of the continuous fully-connected
layer for timestamps t1, t2, . . . tM from a normal distribu-

1

Table 3. Architecture of the proposed stereo matching network. The residual blocks consist of two 2d convolutions followed by shortcut
connections. The convolutions and transposed convolutions, including these in the residual blocks, are followed by LeakyReLU with
negative slope 0.2 and Instance Normalization (IN) [2], unless explicitly stated otherwise. The network receives as an input left and right
event queues of size 2× 7× h× w and returns disparity tensor of size h× w.

Layer Description Output Size
Temporal aggregation

Please, refer § 2.2 in the paper. 64× h× w
Spatial aggregation

S1 2D conv. 3× 5× 5× 64 stride 2 64× 1
2h×

1
2w

S2 2D conv. 64× 5× 5× 64 stride 2 64× 1
4h×

1
4w

S3 2× residual block with 64× 3× 3× 64 2D conv. 64× 1
4h×

1
4w

S4-redir. 2D conv. 64× 3× 3× 8 no IN, LeakyReLU 8× 1
4h×

1
4w

Matching module
M1 concatenate left-right embeddings S3 128× 1

4h×
1
4w

M2 2D conv. 128× 3× 3× 64 64× 1
4h×

1
4w

M3 2× residual block with 64× 3× 3× 64 2D conv. 64× 1
4h×

1
4w × 64

M4 2D conv. 64× 3× 3× 8 no IN, LeakyReLU 8× 1
4h×

1
4w

Regularization module
R1 concatenate joint embeddings M4 8× 1

4dmax × 1
4h×

1
4w

R2 3D conv. 8× 3× 3× 3× 8 8× 1
4dmax × 1

4h×
1
4w

R3 3D conv. 8× 3× 3× 3× 16, stride 2 16× 1
8dmax × 1

8h×
1
8w

R4 R3 + S4-redir. 16× 1
8dmax × 1

8h×
1
8w

R5 3D conv. 16× 3× 3× 3× 16 16× 1
8dmax × 1

8h×
1
8w

R6 R5 + R4 16× 1
8dmax × 1

8h×
1
8w

R7 3D conv. 16× 3× 3× 3× 32, stride 2 32× 1
16dmax × 1

16h×
1
16w

R8 3D conv. 32× 3× 3× 3× 32 32× 1
16dmax × 1

16h×
1
16w

R9 R8 + R7 32× 1
16dmax × 1

16h×
1
16w

R10 3D conv. 32× 3× 3× 3× 64, stride 2 64× 1
32dmax × 1

32h×
1
32w

R11 3D conv. 64× 3× 3× 3× 64 64× 1
32dmax × 1

32h×
1
32w

R12 R11 + R10 64× 1
32dmax × 1

32h×
1
32w

R13 3D conv. 64× 3× 3× 3× 128, stride 2 128× 1
64dmax × 1

64h×
1
64w

R14 3D transposed conv. 128× 4× 4× 4× 64, stride 2 64× 1
32dmax × 1

32h×
1
32w

R15 R14+R11 64× 1
32dmax × 1

32h×
1
32w

R16 3D conv. 64× 3× 3× 3× 64 64× 1
32dmax × 1

32h×
1
32w

R17 3D transposed conv. 64× 4× 4× 4× 32, stride 2 32× 1
16dmax × 1

16h×
1
16w

R18 R17+R8 32× 1
16dmax × 1

16h×
1
16w

R19 3D conv. 32× 3× 3× 3× 32 32× 1
16dmax × 1

16h×
1
16w

R20 3D transposed conv. 32× 4× 4× 4× 16, stride 2 16× 1
8dmax × 1

8h×
1
8w

R21 R20+R5 16× 1
8dmax × 1

8h×
1
8w

R22 3D conv. 16× 3× 3× 3× 16 16× 1
8dmax × 1

8h×
1
8w

R23 3D transposed conv. 16× 4× 4× 4× 8, stride 2 8× 1
4dmax × 1

4h×
1
4w

R24 R23+R3 8× 1
4dmax × 1

4h×
1
4w

R25 3D conv. 8× 3× 3× 3× 8 8× 1
4dmax × 1

4h×
1
4w

R26 3D transposed conv. 8× 4× 4× 4× 4, stride 2 4× 1
2dmax × 1

2h×
1
2w

R27 3D transposed conv 4× 3× 4× 4× 1, stride (1,2,2)
no IN, LeakyReLU

1
2dmax × h× w

Estimator
Please, refer Equation 2 in the paper h× w

Table 4. Average event rate (number of events per second) for all
sequences of the Indoor Flying dataset. Note, that the average
event rate for the second sequence is almost two times higher than
the one for the other sequences.

Average events rate, [events/second]
Sequence 1 Sequence 2 Sequence 3

180’000 280’000 190’000

tion W = [w(t1), . . . ,w(tM)] ∼ N
(
0, 2

Nl+Nl−1

)
and fit-

ting the kernel network to these weights. Besides keeping
the variances in check, this initialization ensures diversity of
the resulting continuous kernels. Its effect is shown in Fig-
ure 1. The bias weights of the fully-connected continuous
layer are initialized with zeros.

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
time, [sec]

−0.1

0.0

0.1

0.2

we
ig
ht

kernel 1
kernel 2
kernel 3

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
time, [sec]

−0.1

0.0

0.1

we
ig
ht

kernel 1
kernel 2
kernel 3

(a) w/ initialization (b) w/o initialization

Figure 1. Continuous kernels before training with and without our
custom initialization of the kernel network. Note, that without the
custom initialization (a) the continuous kernels are mostly linear
and very similar to each other, whereas with our proposed initial-
ization (b) they have complex and diverse shapes. For clarity, we
show 3 kernels out of 64.

4. Problem with the second split
During our experiments with various splits of the Indoor

Flying dataset we noticed significant differences between
the test and the training set of the second split. In the test
set, composed of the second sequence, there are much more
abrupt motions (triggering large numbers of events) than
compared to the training set, composed of sequences one
and three as shown in Table 4. This suggests that the test
and the training set of this split are drawn from very differ-
ent underlying distributions and thus should not be used in
the experiments.

5. Videos
We present two videos showing results of our proposed

method for sequences one and three. To compute the re-
sult for sequence one, we used the network trained on the
sequences two and three (split one) and to compute the re-
sult for sequence three, we use the network trained on the
sequences one and two (split three). We do not provide
the result for the sequence two (split two) for the reasons
discussed in § 4. The videos contain take-off and landing
frames without events, which are not used during training

and test time. The ground truth along with our results of our
proposed method are shown with the same adaptive color-
coding, i.e. warmer colors correspond to closer objects. Lo-
cations with unknown disparities are displayed in white.
The bottom-left panel in the videos shows the left cam-
era events that arrived during the last 0.5 seconds, which
constitutes the input of our method together with the corre-
sponding right camera events. The events are overlaid with
a gray-scale image, which is not used by our method. Posi-
tive events are shown in red and negative events are shown
in blue.

References
[1] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010. 1

[2] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 2

[3] Jure Žbontar and Yann LeCun. Computing the Stereo Match-
ing Cost With a Convolutional Neural Network. CVPR, 2015.
1

