
Supplementary material for the main article:
Better and Faster: Exponential Loss for Image Patch Matching

Shuang Wang1 Yanfeng Li1 Xuefeng Liang1,2 Dou Quan1 Bowu Yang1

Shaowei Wei1 Licheng Jiao1

1School of Artificial Intelligence, Xidian University,Shaanxi,China 2Kyoto University, Kyoto, Japan
xliang@xidian.edu.cn

A. Model architectures

(a) Feature network (b) Siamese network (c) Triplet network

Figure 1: The networks used in our paper. (a) is the shared feature network. (b) is the Siamese network used in descriptor
learning. (c) is the triplet network used in metric learning.

Figure 1 shows the network architectures used in this work. Figure 1 (a) is the shared feature network. The model contains
four convolutional blocks and one SPP operator. Conv block1: C(32,3,1,1)-BN-ReLU-C(32,3,1,1)-BN-ReLU. Conv block2:
C(64,3,1,2)-BN-ReLU-C(64,3,1,1)-BN-ReLU. Conv block3: C(128,3,1,2)-BN-ReLU-C(128,3,1,1)-BN-ReLU. Conv blcok4:
C(128,3,1,1)-BN-ReLU-C(128,3,1,1)-BN. Figure 1 (b) is the Siamese network used in descriptor learning. The model has
two branches that share weights. Two branches have the same settings as in the shared feature network. The output layer
is a fully connected layer (FC) with 128 output units to obtain the feature descriptor. Figure 1 (c) is the triplet network
used in metric learning. The model has three branches that share weights. For training efficiency, we use 3-level pyramid
pooling and remove the last convolutional layer. What’s more, we remove all BN layers. The model architecture is as follow-
ing. Conv block1: C(32,3,1,1)-ReLU-C(32,3,1,1)-ReLU. Conv block2: C(64,3,1,2)-ReLU-C(64,3,1,1)-ReLU. Conv block3:
C(128,3,1,2)-ReLU-C(128,3,1,1)-ReLU. Conv block4: Dropout(0.3)-C(128,3,1,1). To output a pairwise similarity, we add
two fully connected linear layers: FC(128)-ReLU-FC(1)-Sigmoid, where C(n,k,s,d) is a convolutional layer with n filters of
kernel size k × k applied with stride s and dilation d; BN represents Batch Normalization; SPP(a,b,c,d) means that 4-level
pyramid pooling a× a, b× b, c× c, d× d are included in a SPP operator.

B. Stability of exponential loss
To demostrate the stability of our proposed Exp-SLoss and Exp-TLoss, we conduct experiments on UBC and RGB-NIR

benchmarks using our best training settings as discussed in the main paper. In particular, we utilize Exp-SLoss, Exp-TLoss,



l2 loss and l22 loss to optimize the network, and then plot the loss against training epochs in Figure 2 and Figure 3. As can be
seen that the l2 loss decreases slowly because it treats all training samples linearly, and can’t effectively use hard samples to
speed up training. For UBC benchmark, the l22 loss value does not decrease in initial a few training epochs. For RGB-NIR
benchmark, the network using l22 loss dose not converge at all. By contrast, we train the network using the l2 loss in the first
epoch, and then replace it by our Exp-SLoss and Exp-TLoss in subsequent training. The experiment results show that our
training strategy is more stable and performs better.

1 2 3 4 5 6 7 8 9 10
Training epochs

1.2

1.4

1.6

1.8

2.0

Lo
ss

L2-Loss
Squared L2-Loss
Exp-SLoss

1 2 3 4 5 6 7 8 9 10
Training epochs

1.2

1.4

1.6

1.8

2.0

Lo
ss

L2-Loss
Squared L2-Loss
Exp-TLoss

Figure 2: Training process using different loss functions on the UBC benchmark. The left and right figure show the compar-
isons for Exp-SLoss and Exp-TLoss respectively.

1 2 3 4 5 6 7 8 9 10
Training epochs

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

L2-Loss
Squared L2-Loss
Exp-SLoss

1 2 3 4 5 6 7 8 9 10
Training epochs

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

L2-Loss
Squared L2-Loss
Exp-TLoss

Figure 3: Training process using different loss functions on the RGB-NIR benchmark. The left and right figure show the
comparisons for Exp-SLoss and Exp-TLoss respectively.

C. Stability of exponential loss
To study the influence of the hard sampling (of both positive and negative examples) more extensively, we do experiments

using four sampling strategies: no hard sample mining (None), hard positive mining (HardP), hard negative mining (HardN)
and hard positive and negative mining (Both). Table 1 below shows that both hard positive and negative mining performs the
best.

Methods None HardP HardN Both

Metric learning 4.15/24.27 — 0.76/3.92 —
Desriptor learning 16.02/0.78 15.11/0.71 1.07/1.07 1.03/0.8

Table 1: Performance (FPR95/training time (hour)) using different sample mining strategies.


