Supplementary Material
Details of the Model

Both DCP-v1 and DCP-v2 use DGCNN to embed point
clouds. In DGCNN, we use five EdgeConv layers. The num-
bers of filters per layer are [64, 64, 128, 256, 512]. In each
EdgeConv layer, BatchNorm is used [2] with 0.1 momentum,
followed by ReLLU [4]. Following [9], we concatenate the
outputs from the first four layers and feed them into the last
one. Our local aggregation function is max, and no global
aggregation function is needed.

For DCP-v2, in the Transformer layer, the architecture is
the same as the one proposed in [8]. The only difference is
that we do not add positional encoding, because the position
of each point in R? is not correlated with its index in the
array.

We use one encoder and one decoder. In both the encoder
and decoder, we use multi-head attention with 4 heads and
512 embedding dimensions, followed by a MLP with 1024
hidden dimensions. ReLU [4] is also used in the MLP. Inside
the Transformer, LayerNorm [ 1] is used after MLP and multi-
head attention and before the residual connection. Unlike
[8], we do not use Dropout [7].

We use PyTorch’s [5] built-in SVD layer. Other numerical
solvers that support gradient backpropagation could also be
used to recover the rigid transformation.

Adam [3] with initial learning rate 0.001 is used for train-
ing. The coefficients used for computing running averages
of the gradient and its square are 0.9 and 0.999, resp.

We use weight decay 10~ to regularize the model. We
train the model a total of 250 epochs, and at epochs 75, 150
and 200, the learning rate is divided by 10.

The MLP we use in ablation study has 3 fully connected
layers and the number of filters are [256, 128, 64] respec-
tively. BatchNorm [3] and ReLU [4] are used after each
fully connected layer. Finally, another two fully connected
layers are used to project the embeddings to quaternion and
translation vector separately.

The architecture of PointNet in ablation study is the same
as the basic version in [6]. The number of filters in each
layer are [64, 64,64, 128, 512].

Additional Figures

We provide additional figures of results with DCP-v2
tested on different objects in Figure 1. Figure 2 shows results
in which we test with rotations in all of SE(3), meaning
along each axis, we randomly sample rotations in [0, 360°].
The model used here is still trained with rotations in [0, 45°].
As shown in Figure 2, our model generalizes reasonably
well to large motions. Figure 3 shows the results of DCP-
v2 tested on noisy point clouds. The noise (sampled from
N(0,0.01)) is added independently to each point of two
input point clouds.

Model MSE(R) RMSE(R) MAE(R) MSE() RMSE(t) MAE(t)

ICP 2845.295 53.341 45.415 0.084 0.289 0.248
Go-ICP 3778.314 61.468 35.032 0.004 0.066 0.033
FGR 560.506 23.675 8.118 0.001 0.029 0.007
PointNetLK 4826.940 69.476 44.307 0.006 0.080 0.047
DCP-v2 (ours)  225.736 15.025 2.260 0.000002 0.001 0.001

Table 1. ModelNet40: Test on unseen point clouds ([0, 90°])

Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(f) MAE()
Icp 11175.784 105.716 90.713 0.085 0.292 0.250
Go-ICP 13169.908 114.760 92.941 0.013 0.115 0.080
FGR 13808.102 117.508 87.678 0.008 0.090 0.047
PointNetLK 13751.237 117.266 94.539 0.011 0.104 0.067

DCP-v2 (ours) 13152160  114.683 78.333  0.000005 0.002 0.001

Table 2. ModelNet40: Test on unseen point clouds ([0, 180°])

Model MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(®)
Icp 1125.095 33.542 25.032 0.088 0.296 0.251
Go-ICP 216.790 14.724 3.511 0.001 0.032 0.012
FGR 130.621 11.429 2.960 0.001 0.032 0.008
PointNetLK 374.948 19.364 7.389 0.003 0.053 0.029
DCP-v2 (ours)  23.471 4.845 2.486 0.001 0.033 0.024

Table 3. ModelNet40: Test on unseen partial point clouds ([0, 45°])

#Iters MSE(R) RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(®)

1 1.307329  1.143385  0.770573  0.000003  0.001786  0.001195
3 0.568834  0.754211  0.223045 0.000001  0.000872  0.000519
5 0.267259  0.516971  0.168858 0.000001  0.000870 0.000518
7 0.163877  0.404817  0.145387  0.000001  0.000870  0.000517

Table 4. ModelNet40: Test on unseen point clouds (iterative infer-
ence on testing, [0,45°])

Additional Ablation Studies

We carried out more ablation studies dealing with large
motions, iterative inference during testing, and dealing with
partial point clouds (R2). Tables 1 and 2 show the results
when the testing rotation is sampled in [0, 90°] and [0, 180°],
respectively. The results suggest that in more challenging
scenarios, DCP still outperforms other methods. Table 4
shows that when testing with iterative inference, DCP con-
sistently increases performance. For partial matching, we
simulate partial point clouds of X and ) by randomly plac-
ing a point in space and computing its 768 nearest neighbors
in X and ) respectively; Table 3 shows the results.
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Figure 1. Results of DCP-v2. Top: inputs. Bottom: outputs of DCP-v2.
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Figure 2. Results of DCP-v2 tested with large motion. Top: inputs. Down: outputs of DCP-v2
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Figure 3. Results of DCP-v2 tested on noisy point clouds. Top: inputs. Down: outputs of DCP-v2



