
(Supplementary Material) Point-to-Point Video Generation

A. Overview
The supplementary material is organized as follows:

First, we provide an overview video (video link:
https://drive.google.com/open?id=
1kS9f2oNGFPO_hp7iWZmvtXLPnOrhl9qW), which
briefly summarizes our work. Second, we provide more
quantitative results on all datasets: SM-MNIST, Weizmann
Human Action, and Human3.6M in Sec. B. Furthermore in
Sec. C, we present more qualitative evaluations with respect
to i) “Generation with various length” in Figs. 6-8 (more
examples at https://drive.google.com/open?
id=1ueQHNx56MWoqL9ilHjZuBZourg4VrbKc);
ii) “Multiple control-points generation” in Fig. 9 (more
examples at https://drive.google.com/open?
id=1OUOd2LjmKwHwVpRwldUEIgvzfpWucYjt);
iii) “Loop generation” in Fig. 10 (more examples
at https://drive.google.com/open?id=
1kb8PCIR2_lkE1JS6NlwyglxKlChSBSbF). Finally,
the implementation details are described in Sec. D.

B. Quantitative Results
B.1. Performance Under Various Length

In this section, we investigate control point consistency,
generation quality and diversity under generation of dif-
ferent lengths on SM-MNIST, Weizmann Action, and Hu-
man3.6M dataset (refer to Sec. 4.4 in the main paper).

Control Point Consistency (S-CPC): In Fig. 1, we show
the performance of CPC on the three datasets, where for
SM-MNIST and Weizmann (the first and the second col-
umn), the higher (SSIM) the better, and for Human3.6M
(the last column), the lower (MSE) the better. Our method
(red line) significantly outperforms other baselines on all
datasets, while different components of our method includ-
ing CPC on prior, latent space alignment, and skip-frame
training all introduce performance gain.

Quality (S-Best): In Fig. 2, we demonstrate that our
method is able to sustain the generation quality on the three
datasets, with the higher (SSIM) the better for SM-MNIST
and Weizmann (the first and the second column), and the
lower (MSE) the better for Human3.6M (the last column).

Our method (red line) achieves superior quality on Hu-
man3.6M since its data contain 3D skeletons with highly
diverse actions and imposing a targeted end-frame largely
confines the S-Best error (more details mentioned in Sec.
4.5 in the main paper). On the other hand, for SM-MNIST
and Weizmann, our method only suffers from marginal per-
formance drop in comparison with other baselines. We
point out that the generation quality in SM-MNIST gradu-
ally declines with increasing generation length since the two
digits are prone to overlapping with each other in a longer
sequence, resulting in blurry generation after the encounter.
This can be potentially solved by representation disentan-
glement [34, 4, 33, 11, 38], which is out of scope of this
paper and left to future work. Overall, we establish that our
method attains comparable generation quality while achiev-
ing CPC.

Diversity (S-Div): Finally, we show the generation diver-
sity on the three datasets in Fig. 3, where for all columns,
the higher (SSIM or MSE) the better. We can observe that
our method (red line) reaches superb and comparable per-
formance on Human3.6M and SM-MNIST dataset respec-
tively. On the contrary, Weizmann dataset involves video
sequences with steady and fixed-speed action and hence
tremendously reduces the possibility of generation if pos-
ing constraint at the end-frame (red line in the middle col-
umn). All in all, regardless of the limitation of dataset itself,
our method is capable of generating diverse sequences and
simultaneously achieving CPC.

B.2. Performance Through Time

In this section, we perform a more detailed analysis on
generation quality and diversity through time (refer to Sec.
4.5 in the main paper).

Quality (S-Best): In Fig. 4, we show the generation qual-
ity at each timestep on the three datasets, with the higher
(SSIM) the better for SM-MNIST and Weizmann (the first
and second columns), and the lower (MSE) the better for
Human3.6M (the last column). We can observe a con-
sistent trend across methods and datasets that the quality
progressively decreases as the timestep grows. This is ex-
pectable since the generated sequences will step-by-step de-
viate from the ground truth and induce compounding error
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SM-MNIST (SSIM ↑) Weizmann (SSIM ↑) Human3.6M (MSE ↓)

Figure 1: (Better view in color) Control point consistency in generation with various length. Our model significantly outper-
forms other baselines on all datasets under various lengths.

SM-MNIST (SSIM ↑) Weizmann (SSIM ↑) Human3.6M (MSE ↓)

Figure 2: (Better view in color) Quality in generation with various length. Our model sustains the generation quality on the
three datasets while achieving CPC.

SM-MNIST (SSIM ↑) Weizmann (SSIM ↑) Human3.6M (MSE ↑)

Figure 3: (Better view in color) Diversity in generation with various length. Ours achieve better or comparable diversity on
SM-MNIST and Human3.6M while achieving CPC.

as the generation is gradually further from the given start-
frame. Remarkably, for all methods taking CPC into con-
sideration (orange, green, and red lines), there is a strong
comeback on the generation quality at the end of the se-
quence since achieving CPC ensures that the generated end-
frame converges to the targeted end-frame, thus leading to
the results with better S-Best at the last timestep. Finally,
the quality boost at the end-frame is lower in Weizmann
dataset (the middle column) since unlike the other two (the

first and the last columns), its data are captured in noisy
background, posing more challenges to CPC and conse-
quently causing lower quality at the end frame.

Diversity (S-Div): In Fig. 5, we demonstrate the genera-
tion diversity through time on the three datasets, with the
higher (SSIM or MSE) the better in all columns. A consis-
tent trend is shared across all datasets (all columns) in our
method (red line) where the diversity is high in the inter-
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SM-MNIST (SSIM ↑) Weizmann (SSIM ↑) Human3.6M (MSE ↓)

Figure 4: (Better view in color) Quality through time. The generation quality of our model is comparable on SM-MNIST,
Weizmann and better on Human3.6M while achiving control-point consistency.

SM-MNIST (SSIM ↑) Weizmann (SSIM ↑) Human3.6M (MSE ↑)

Figure 5: (Better view in color) Diversity through time. The diversity is high in the intermediate frames but reaches zero at
the two control points—the targeted start- and end-frames.

mediate frames but reaches zero at the two control points—
the targeted start- and end-frames. This suggests that our
method is able to plan ahead, generate high-diversity frames
at the timestep far from the end, and finally converge to the
targeted end-frame with zero-approaching diversity. In ad-
dition, we point out that the diversity curve of Weizmann
dataset (the middle column) indicates a slightly worse per-
formance in comparison to the results on the other two
datasets (the first and third columns) since Weizmann data
is featured by unvarying actions, e.g., walking in a fixed
speed, that immensely reduces the potential diversity at the
intermediate frames.

C. Qualitative Results
Generation with various length. In Fig. 6, Fig. 7,
and Fig. 8, we demonstrate the generation results with
various lengths on SM-MNIST, Weizmann Action, and
Human3.6M datasets. For more generated examples,
please see https://drive.google.com/open?
id=1ueQHNx56MWoqL9ilHjZuBZourg4VrbKc.

Multiple control-points generation. In Fig. 9, given
multiple targeted start- and end-frames, we show our

model’s ability to merge multiple generated clips into
a longer video. For more generated examples, please
see https://drive.google.com/open?id=
1OUOd2LjmKwHwVpRwldUEIgvzfpWucYjt.

Loop generation. In Fig. 10, by setting the targeted
start- and end-frame to be the same, we can achieve
loop generation. For more generated examples, please
see https://drive.google.com/open?id=
1kb8PCIR2_lkE1JS6NlwyglxKlChSBSbF.

D. Implementation Details
We provide the training details and network architecture

in this section.

D.1. Training Details

We implement our model in PyTorch. For SM-MNIST
and Weizmann Action the input and output image size is
64 × 64, and for Human3.6M the input comprises the joint
positions of size 17× 3. Note that while our p2p generation
models are fed with the targeted end-frames, the baseline
method SVG [3], which is not CPC-aware, is introduced
with one additional frame such that all methods are com-
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27 28 29 301 2 3 4 22 23 24 25 26
Figure 6: Generation with various length on SM-MNIST. Given the targeted (orange) start- and (red) end-frames, we show
the generation results with various lengths on SM-MNIST.
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27 28 29 301 2 3 4 5 6 7 25 26

22 23 24 251 2 3 4 5 6 7 8 9

17 18 19 201 2 3 4 12 13 14 15 16

27 28 29 301 2 3 4 22 23 24 25 26

37 38 39 401 2 3 4 32 33 34 35 36
Figure 7: Generation with various length on Weizmann. Given the targeted (orange) start- and (red) end-frames, we show the
generation results with various lengths on Weizmann.
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Figure 8: Generation with various length on Human3.6M. Given the targeted (orange) start- and (red) end-frames, we show
the generation results with various lengths on Human3.6M.

pared under the same number of input frames. For the re-
construction loss in Lfull

θ,φ,ψ, we use L2-loss. All models are
trained with Adam optimizer, learning rate of 0.002, and
batch size of 100, 64, 128 for SM-MNIST, Weizmann Ac-
tion and Human3.6M respectively. The weights in the full
objective function and other details regarding each dataset
are summarized as follows:

SM-MNIST: For the weights inLfull
θ,φ,ψ, we set β = 10−4,

αcpc = 100, αalign = 0.5, pskip = 0.5. And the length of
training sequences is 12±3.

Weizmann Action: For the weights inLfull
θ,φ,ψ, we set β =

10−5, αcpc = 105, αalign = 0.1, pskip = 0.3. The length
of training sequences is 15±3 for Weizmann Action and we
augment the dataset by flipping each sequence so that our
model can learn to generate action sequences that proceed
toward both directions.

Human3.6M: For the weights in the objective function
Lfull
θ,φ,ψ: β = 10−5, αcpc = 105, αalign = 1.0, pskip = 0.3.

The length of training sequences for Human3.6M is 27±3.
Besides, we speed up the training sequences to 6× since
the adjacent frames in the original sequences are often too

similar to each other, which may prevent the model from
learning diverse actions.

D.2. Network Architecture

The networks for three datasets all contain the following
main components: i) posterior qφ, ii) prior pψ , and iii) gen-
erator pθ. The encoder is shared by qφ, pψ and the global de-
scriptor. We choose DCGAN [?] as the backbone of our en-
coder and decoder for SM-MNIST and Weizmann Action,
and choose multilayer perceptron (MLP) for Human3.6M.
The hyper-parameters for the decoder, encoder, qφ, pψ and
pθ for each dataset are listed below:

SM-MNIST: For the networks we set |ht| = 128, |zt| =
10; one-layer, 256 hidden units for qφ, one-layer, 256 hid-
den units for pφ, two-layer, 256 hidden units for pθ.

Weizmann Action: We use |ht| = 512, |zt| = 64; one-
layer, 1024 hidden units for qφ, one-layer, 1024 hidden units
for pφ, two-layer, 1024 hidden units for pθ.

Human3.6M: The networks have |ht| = 512, |zt| = 32;
one-layer, 1024 hidden units for qφ, one-layer, 1024 hidden
units for pφ, two-layer, 1024 hidden units for pθ. The en-
coder MLP consists of 2 residual layers with hidden size of
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Figure 9: Multiple control points generation. Given multiple targeted (orange) start- and (red) end-frames, we can merge
multiple generated clips into a longer video.

27 28 29 301 2 3 4 5 6 7 8 9

Figure 10: Loop generation. We set the targeted (orange) start- and end-frame with the same frame to achieve loop generation.
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512, followed by one fully-connected layer and activated by
tanh function; the decoder MLP is the mirrored version of
the encoder but without tanh in the output layer.
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