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This supplementary material includes the implementa-
tion details, baseline algorithm designs, and more experi-
ment results.

1. Network Architecture
1.1. Deformation Sampling

In particular, a level-K icosahedron is obtained by sam-
pling the middle points of all the edges from a level-(K-1)
icosahedron, and a level-0 icosahedron vertex coordinates
can be calculated as
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Here, each row represents a vertex coordinate on the level-0
icosahedron.

In our experiment, we use Meshlab [3] to generate level-
1 icosahedron [10] vertices coordinates and corresponding
edges for deformation hypotheses and local GCN graph
topology. The vertex coordinates are scaled along the ra-
dius to a pre-defined value. More details about connection
and implementation can be found in [1, 11].

1.2. Deformation Reasoning

The network architecture for deformation reasoning is
shown in Tab. 1. The Deformation Reasoning component
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takes current vertices coordinates, hypothesis feature and
hypothesis coordinates as input. It consists of 6 graph con-
volution layers with residual connections. The last graph
convolution layer is followed by a softmax layer and the
final output is normalized to weights, which are used to
obtain new coordinates for the vertices through weighted
sums.

1.3. Perceptual Feature Pooling

The perceptual feature pooling layer projects all 3D ver-
tices onto feature maps and obtain the vertices features from
the corresponding 2D coordinates. Suppose a 3D vertex
with coordinate (X,Y, Z) in the camera view; its 2D pro-
jection in image is:

x =
X

Z
∗ fx + cx,

y =
Y

Z
∗ fy + cy,

(3)

where fx and fy denote the focal lengths along horizontal
and vertical image axis, and (cx, cy) is the projection of the
camera center.

To pool feature from multiple images for each vertex,
we transform the vertex into the camera coordinate of each
input views using the camera extrinsic matrix. Suppose the
{R, T} is the transformation from the world coordinate to
a camera coordinate, and V is the coordinate of a vertex in
the world coordinate, its location in the camera coordinate
can be obtained by Vc = R · V + T .

2. Baselines Methods

In Sec. 4.2 of the main submission, we propose two
baselines extending the Pixel2Mesh architecture for multi-
view shape generation. Here we show more details about
them.

2.1. P2M-M

For the P2M-M baseline, we first run the single-view
Pixel2Mesh on each of the input views to generate a shape
respectively. These shapes are then transformed into the



Tensor Name Layer Parameters Input Tenstor Activation

Vertices Coordinate Input - - -
Hypothesis Coordinate Input - - -

Hypothesis Feature Input - - -
GraphConv1 GraphConv 339× 192 Hypothesis Feature ReLU
GraphConv2 GraphConv 192× 192 GraphConv1 ReLU
GraphConv3 GraphConv 192× 192 GraphConv2 ReLU

Add1 Add - GraphConv2, GraphConv3 -
GraphConv4 GraphConv 192× 192 Add1 ReLU
GraphConv5 GraphConv 192× 192 GraphConv4 ReLU

Add2 Add - GraphConv4, GraphConv5 -
GraphConv6 GraphConv 192× 1 Add2 ReLU

Hypothesis Score Softmax - GraphConv6 -

New Vertices Coordinate Weighted Sum -
Hypothesis Score,

Hypothesis Coordinate, Vertices Coordinate -

Table 1. Network Architecture for Deformation Reasoning.

world coordinate and converted into signed distance func-
tion (SDF) [4, 8, 7]. We directly average these SDFs and
run Lorensen et al. [6] to obtain the triangular meshes.

Figure 1. Results of baselines.

2.2. MVP2M

For the P2M-M baseline, Pixel2Mesh sees only one im-
age at once. Here, we extend Pixel2Mesh to access mul-
tiple images in a single network forward pass by having
it pools multi-view features from all the inputs. This can
be achieved by replacing the perceptual feature pooling
layers with our multi-view version as introduced in Sec.
1.3. In particular, perceptual features are pooled from layer
‘conv3 3’, ‘conv4 3’, and ‘conv5 3’ from the VGG-16 net-
work, and feature statistics (Sec. 3.1.2 in the main submis-
sion) are calculated and concatenated, which ends up with a
1280 dimension feature vector. In practice, we also tried to
pool geometry related features from early convolution lay-

ers (i.e. ‘conv1 2’, ‘conv2 2’, and ‘conv3 3’), but found
it doesn’t work as well as the case with semantic feature
pooled from later layers.

Fig. 1 shows some examples of results from both base-
lines.

3. More Experiment Results
In this section, we provide more results for quantitative

and qualitative evaluations and ablation study.

3.1. Comparison to State-of-the-art

In the main submission, we compare to the state-of-the-
art methods in F-score. Here we show the comparison in
Chamfer distance in Tab. 2. Again, we achieve overall the
best performance (i.e. the lowest Chamfer distance) com-
paring to all the previous methods and baselines. We also
achieve the best performance for most of the categories, ex-
cept for very few categories in which geometry and texture
are usually too simple to learn cross-view information.

3.2. Ablation Study

3.2.1 Effect of Re-sample Loss

More comparison between the model trained with the tra-
ditional and our re-sampled Chamfer loss is shown in Fig.
2. As can be seen in the zoom-in areas, our re-sampled
Chamfer loss can effectively penalize large flying triangles
caused by a few flying vertices , and thus the results of our
full model are free from such artifacts.

3.2.2 Effect of More Iterations

In our main submission, we show the numerical improve-
ments with more iterations. Here we show some qualitative



Category Chamfer Distance(CD) ↓
3DR2N2† LSM MVP2M P2M-M Ours

Couch 0.806 0.730 0.534 0.496 0.439
Cabinet 0.613 0.634 0.488 0.359 0.337
Bench 1.362 0.572 0.591 0.594 0.549
Chair 1.534 0.495 0.583 0.561 0.461
Monitor 1.465 0.592 0.658 0.654 0.566
Firearm 0.432 0.385 0.305 0.428 0.305
Speaker 1.443 0.767 0.745 0.697 0.635
Lamp 6.780 1.768 0.980 1.184 1.135
Cellphone 1.161 0.362 0.445 0.360 0.325
Plane 0.854 0.496 0.403 0.457 0.422
Table 1.243 0.994 0.511 0.441 0.388
Car 0.358 0.326 0.321 0.264 0.249
Watercraft 0.869 0.509 0.463 0.627 0.508

Mean 1.455 0.664 0.541 0.548 0.486

Table 2. Comparison to Multi-view Shape Generation Methods. We show the Chamfer Distance on each semantic category. Our method
achieves the best performance overall. The notation † indicates the methods which does not require camera extrinsics.

Figure 2. Effect of Re-sampled Loss. We show more qualitative comparison between model trained with original Chamfer loss and our
re-sampled version. The re-sampled loss (Full model) helps to prevent the flying pixel and spike artifacts.

results in Fig. 3. As can be seen, thin structure and sur-
face details are recovered throughout iterations as reflected
in the zoom-in regions.

3.2.3 Effect of Different Coarse Shape Generation

We add another experiment using MVP2M and P2M-M
as coarse shape initialization methods respectively. Here
we show the comparison results in Tab. 3. MDN consis-
tently improves upon both P2M-M and MVP2M. Ours is

also slightly better than P2M-M+MDN as the initialization
is better. In order to emphasize the generalization ability of
using non-ellipsoid initial, we also add experimental results
of training on the chair class using other voxel-based meth-
ods e.g. 3DR2N2 as a rough shape initialization methods.
The qualitative and quantitative result are shown in Fig. 4.
As can be seen, MDN generalizes to meshes obtained from
3DR2N2 directly without finetuning.
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Figure 3. Effect of Iterations. We show the output of our system after each iterations. Thin structures and geometry details are recovered
in the later iterations.

Methods CD↓ F-score(τ )↑ F-score(2τ )↑
P2M-M 0.548 61.72 76.45

P2M-M+MDN 0.493 64.47 79.31
MVP2M 0.541 61.05 77.10

Ours 0.486 66.48 80.30

Table 3. Effect of Different Coarse Shape Generation.

(a) Example mesh result.

Metrics w/o MDN w/ MDN
CD 2.438 1.418

F-score(τ ) 20.24 36.81
F-score(2τ ) 31.62 52.45

(b) 3DR2N2 scheme with/wo MDN on chair

Figure 4. Experiments results using non-ellipsoid initial.

3.3. More Qualitative Results

In the end, we show more qualitative results in Fig. 5,
Fig. 6, and Fig. 7. For each example, we show the input
image and the results from 3D-R2N2 [2], LSM [5], P2M
[9], our model, and the ground truth. In overall, our model
produces accurate shapes that align well with input views
and maintain good surface details.

4. Discussion about Self-intersection
Some experiments results indicate Pixel2Mesh suffers

from self-intersection since it was not explicitly handled. In
contrast, we observed that Pixel2Mesh++ produces results
with less intersection even though we did not particularly
handle it either. We conjecture that this is because geo-
metric reasoning cross checks information from multi-view,
and thus the shape generation is more stable and robust. Us-
ing more stable features and larger Laplacian regular terms
in training may alleviate this problem as well.



Figure 5. More Qualitative Results. From top to bottom, we show for each example: two camera views, results of 3DR2N2, LSM,
Pixel2Mesh, ours, and the ground truth.



Figure 6. More Qualitative Results. From top to bottom, we show for each example: two camera views, results of 3DR2N2, LSM,
Pixel2Mesh, ours, and the ground truth.



Figure 7. More Qualitative Results. From top to bottom, we show for each example: two camera views, results of 3DR2N2, LSM,
Pixel2Mesh, ours, and the ground truth.
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