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1. Simulated Scenarios

Figure 1 depicts samples of the 5 target (human or hu-
manoid robot models) and 4 scenarios (outdoor and indoor
scenes) that we created within the Gazebo simulation soft-
ware [3]. These are used both for generating and evaluating
Physical Adversarial Textures (PAT).

(a) t-shirt person in
school

(b) white person in
playground

(c) green person in
school

(d) t-shirt person in
forest

(e) robonaut in forest (f) PR2 in cafe

Figure 1: Samples of simulated scenarios.

2. PAT Attack: Random Scene Configuration

The Expectation Over Transformation (EOT) algo-
rithm [1] randomizes various parameters and aspects of
scenes, such as camera placement and target appearance.

By optimizing on these diverse and randomized scenes, we
can ensure that the generated PAT would likely be univer-
sally adversarial. Table 1 presents default ranges used for
continuous transformation variables used in our PAT Attack
process, while Table 2 enumerates selections for discrete
transformation variables. This default configuration is used
in Sections 6.2, 6.4, and 6.5 in the main paper.

Table 1: Continous EOT variable ranges for PAT attack.

Transformation Min Max
Initial camera x (m) -1.5 1.5
Initial camera y (m) -11.0 -6.0
Initial camera z (m) 0.6 1.8
Initial camera roll (◦) 0.0 0.0
Initial camera pitch (◦) -5.0 5.0
Initial camera yaw (◦) -15.0 15.0
Camera ∆x (m) -0.1 0.1
Camera ∆y (m) -0.5 0.5
Camera ∆z (m) -0.1 0.1
Camera ∆roll (◦) 0.0 0.0
Camera ∆pitch (◦) -3.0 3.0
Camera ∆yaw (◦) -3.0 3.0
Initial target x (m) -1.4 1.4
Initial target y (m) -5.0 -0.7
Initial target z (m) 0.0 0.0
Initial target roll (◦) 0.0 0.0
Initial target pitch (◦) 0.0 0.0
Initial target yaw (◦) 0.0 180.0
Target ∆x (m) -0.1 0.1
Target ∆y (m) -0.1 0.1
Target ∆z (m) 0.0 0.0
Target ∆roll (◦) 0.0 0.0
Target ∆pitch (◦) 0.0 0.0
Target ∆yaw (◦) -10.0 10.0
Lighting diffuse hue 0.0 360.0
Lighting diffuse saturation 0.0 0.2
Lighting diffuse value 0.1 0.7



f ̃ 
j−1

Conv2D 
96x11x11 

s = 4 

Max 
Pool

Conv2D
384x3x3 

s = 1 

Conv2D
384x3x3 

s = 1 
FC 

4096
FC 

4096

D 
R 
O 
P 
O 
U 
T 

D 
R 
O 
P 
O 
U 
T 

FC 
4 

Conv2D 
256x5x5 

s = 1 

Conv2D
256x3x3 

s = 1 
FC 

4096

D 
R 
O 
P 
O 
U 
T f ̃ 

j

Conv2D 
96x11x11 

s = 4 

Conv2D
384x3x3 

s = 1 

Conv2D
384x3x3 

s = 1 

Conv2D 
256x5x5 

s = 1 

Conv2D
256x3x3 

s = 1 

Max 
Pool

Max 
Pool

Max 
Pool

Max 
Pool

Max 
Pool

 

 

lj

(a) Regular-capacity model [2] (Lg)
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(b) Reduced-capacity model (Sm)

Figure 2: Neural architectures for the GOTURN object tracker instances.

Table 2: Discrete EOT variable selections for PAT attack.

Backgrounds Targets
school green person
forest PR2

3. Trained GOTURN models
Figure 2 illustrates the two GOTURN neural object

tracking architectures used in our experiments.

4. Baseline PAT Attack Settings
The parameters used in the baseline PAT attack settings

(Section 6.1.3 in the main paper) were determined using hy-
perparameters search, and from conducting sensitivity anal-
yses on EOT minibatch size and iteration, as well as texture
attributes experiments.

4.1. EOT Minibatch Size and Iteration

Similar to how training a neural network using Stochas-
tic Gradient Descent (SGD) is sensitive to hyperparameter
settings, we analyzed the sensitivity of our proposed PAT at-
tack method to its hyperparameters. We suspect that attacks
using smaller EOT minibatch sizes B would require more
iterations I to converge assuming a fixed perturbation step
size α, while attacks using large minibatch sizes B would
require an impractical amount of computing time per itera-
tion. Thus, it is practically beneficial to balance the combi-
nation of the perturbation step size α and the minibatch size
B, given a fixed number of attack iterations I .

We first optimized α for a fixed minibatch size of B =
20. As shown in Figure 3a, a step size of α = 0.025
attained the best end-performance, however α = 0.075
converged initially much faster. This trade-off substanti-
ates our empirical observations and suggests that the source
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Figure 3: Adversarial strength over attack iterations, for
various α values and EOT minibatch size.

texture initially needs to have most of its pixels broadly
perturbed to cause adversarial texture patterns to emerge,
which would require drastic pixel changes with large per-
turbation sizes. Subsequently, however, slight localized
pixel enhancements around “critical adversarial patterns”
(see Section 6.4 in the main paper) steadily enhance the
PAT’s adversarial strength. Thus, we recommend a prac-
tical schedule that starts with a large perturbation size of
α = 0.075 for 500 attack iterations, and then refines using
a smaller step size of α = 0.025.



Next, using a single non-scheduled perturbation size of
α = 0.075, we varied the EOT minibatch size B. Note
that, in Figure 3b, µIOUd is plotted against the number of
total EOT scenarios observed, i.e., B × I . These results
show consistent performance trends that are proportional to
B × I , i.e. the total number of scenes seen by each PAT
attack, rather than the number of attack iterations I itself.
Also, beyond small values of B ≥ 20 that lead to high-
variance stochastic gradient updates, larger minibatch sizes
result in similar and diminishing amounts of improvement
in both initial convergence speed and asymptotic adversarial
strength. Consequently, we choseB = 20 for the best trade-
off between compute per attack iteration and convergence.

4.2. Texture Attributes
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Figure 4: Adversarial strength among various initial tex-
tures and texture sizes.

Various related work made different recommendations
on which source texture to use for best results. In particu-
lar, suggestions included all-white and all-yellow [5], and
a random contrasted checkerboard pattern alternating be-
tween uniform sampling of [0, 255] and {0, 255} [4]. We
also tried an all-gray source pattern, as well as a per-pixel
randomly-sampled source.

However, as shown in Figure 4a, we found that initializ-
ing the texture with different patterns did not result in sig-
nificant changes in convergence nor performance.

We also explored the effects of changing texture sizes

and found that using a resolution of 32× 32 lead to consis-
tently poor results, while settings of 64 × 64, 128 × 128,
and 256× 256, yielded little differences in both initial con-
vergence speed and asymptotic performance, as seen in Fig-
ure 4b. We thus chose 128×128 to balance between having
sufficient pixel capacity to accommodate the wide ranges
of EOT conditions, and amount of computation to compute
texture perturbations. Still, we found it very important to be
aware that our resolution choices are significantly affected
by the viewing distances (see Section 2) and poster sizes
used in our experiments.

5. Ablation of EOT Conditioning Variables
In Section 6.3 of the main paper, we evaluated the

effects of varying the ranges or choices for different
EOT transformation variables, including background (-bg,
+bg), target (-target, +target), lighting (-light,
+light), poster size (small poster), camera pose
(-cam pose, +cam pose), and target pose (-target
pose, +target pose). Modified ranges to camera pose,
target pose, and lighting are shown in Table 3, 4, and 5, re-
spectively. Also, variations for (-bg, +bg) and (-target,
+target) are as follows:

• -bg: use playground only;

• +bg: randomize among school, forest,
playground and cafe;

• -target: use green person only;

• +target: randomize among green person,
white person, t-shirt person, PR2 and
robonaut.

Table 3: PAT attack settings for -cam pose and +cam
pose.

Transformation -cam pose +cam pose
Min Max Min Max

Initial x (m) 0.0 0.0 -2.0 2.0
Initial y (m) -8.5 -8.5 -16.5 -5.5
Initial z (m) 1.2 1.2 0.4 2.2
Initial roll (◦) 0.0 0.0 -1.5 1.5
Initial pitch (◦) 0.0 0.0 -10.0 10.0
Initial yaw (◦) 0.0 0.0 -20.0 20.0
∆x (m) 0.0 0.0 -0.15 0.15
∆y (m) 0.0 0.0 -0.80 0.80
∆z (m) 0.0 0.0 -0.15 0.15
∆roll (◦) 0.0 0.0 0.0 0.0
∆pitch (◦) 0.0 0.0 -5.0 5.0
∆yaw (◦) 0.0 0.0 -5.0 5.0



Table 4: PAT attack settings for -target pose and
+target pose.

Transformation -target pose +target pose

Min Max Min Max
Initial x (m) 0.0 0.0 -1.6 1.6
Initial y (m) -2.7 -2.7 -5.0 -0.7
Initial z (m) 0.0 0.0 0.0 0.0
Initial roll (◦) 0.0 0.0 0.0 0.0
Initial pitch (◦) 0.0 0.0 0.0 0.0
Initial yaw (◦) 90.0 90.0 -90.0 270.0
∆x (m) 0.0 0.0 -0.15 0.15
∆y (m) 0.0 0.0 -0.15 0.15
∆z (m) 0.0 0.0 0.0 0.0
∆roll (◦) 0.0 0.0 0.0 0.0
∆pitch (◦) 0.0 0.0 0.0 0.0
∆yaw (◦) 0.0 0.0 -20.0 20.0

Table 5: PAT attack settings for -light and +light.

Diffuse Light Source -light +light
Min Max Min Max

Hue 0.0 360.0 0.0 360.0
Saturation 0.0 0.0 0.0 0.7
Value 0.7 0.7 0.0 0.7
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Figure 5: Adversarial strength and perceptual similarity
among various wps.

6. Imitation Attacks

In Section 6.4 of the main paper, we set the value of
wps = 0.6. This value was determined based on an ex-
periment where we studied the effect of changing wps on
the adversarial strength µIOUd and perceptual similarity
(as measured by the Euclidean L2 distance to the source
image in RGB colorspace). Unsurprisingly, as seen in Fig-
ure 5, smaller values of wps imposed fewer constraints
and thus lead to faster attack convergence and better end-
performance, while the inverse was true for larger values
of wps. We thus chose wps = 0.6 after manually assessing
which PATs had recognizable levels of perceptual similarity
to their source images, as seen in Figure 10.

To substantiate Figure 6 in the main paper, Figure 6 (in
this document) illustrates how µIOUd and perceptual sim-
ilarity metrics change over attack iterations. As we can
see, some specific combinations of initial posters and losses
made the attack easier to converge. For example, perform-
ing attacks using waves as initial texture with hybrid losses
(Lnt & Lga+) resulted in strong adversaries, while using
non-targeted loss alone did not.

Figure 7 compares perceptual similarity (L2 norm)
against adversarial strength (µIOUd) among Lga−, Lnt,
and Lt−, and shows that, for a given threshold on L2 norm,
Lga− generally had better early convergence, but likely
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Figure 6: Adversarial strength and perceptual similarity
among source textures shown in Figure 6 of main paper.
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Figure 7: Performance of Lnt, Lga−, and Lt− in imitating dogs and PR2 textures for wps ∈ [0.1 : 0.1 : 0.8].

weakened adversarial strength after more attack iterations.
Figure 11 illustrates the emergence of “critical adversar-

ial patterns” that we discussed in Section 6.4 in the main pa-
per. In Figure 11a, the critical dark striped pattern started to
emerge at around iteration 400, followed by the appearances
of other nearby colorful patterns, which presumably were
to drive predictions towards the central adversarial striped
pattern. In contrast, when we imposed a perceptual simi-
larity loss during an imitation attack, only the dark striped
pattern eventually emerged after significantly more attack
iterations, as seen in Figure 11b.

7. Transfer among tracking models

We evaluated the transferability of PATs among different
tracking models. When evaluating PATs on GOTURN mod-
els trained using different datasets, the off-diagonal results
in Figure 8a generally show that a decent-to-great amount
of adversarial strength is still present. Nevertheless, we see
that the transferred efficacy of adversaries varied based on
the tracker model and the loss used. For instance, a sim-
trained PAT optimized using Lnt and applied to the s2r
GOTURN tracker is strongly adversarial, whereas a similar
PAT optimized using Lga+ becomes completely inert.

Similarly, PATs preserved some of their adversarial
strength when transferred between trackers with differ-
ent capacities, as seen in Figure 8b. However, while all

PATs applied to reduced-capacity models (Sm) affected GO-
TURN predictions, their µIOUd values around 0.20 do not
reflect strong adversaries, thus indicating that it is more dif-
ficult to fool small-capacity GOTURN networks into con-
sistently breaking away from their intended target.
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Figure 8: Adversarial strength of generated PATs (columns)
applied to different GOTURN tracking models (rows).

Figure 9 shows the PATs used in this experiment. Gen-
erally, we observe similar adversarial patterns emerging
from PAT Attacks on GOTURN models trained on different



datasets, as well as different capacities, which explain why
PATs transfer to a certain degree among different GOTURN
trackers. The sole exception is seen from the second row
of Figure 9a, which reflected the fact that the adversarial
loss Lga+ caused different patterns to emerge for different
models, albeit with similar levels of competent adversarial
strength.

8. Demonstration of Sim-to-real Transfer
As discussed in Section 6.5 in the main paper, we con-

ducted test runs in real-world tracking and servoing con-
ditions, and qualitatively verified the transferred adversar-
ial strength of our synthetically-generated PATs, especially
those containing “critical adversarial patterns”. Many of
these real-world runs are shown in the supplementary video.
Nevertheless, it is generally difficult to quantify perfor-
mance consistently in the real world, due to tediousness
and impracticality in labeling performance, controlling for
repeated conditions, and dealing with practical complexi-
ties such as limited battery life and hardware failures. Still,
we segmented runs into video clips, and manually labeled
them as either strongly adversarial (i.e. where the tracker
jumps onto the PAT and stays locked onto it even when mo-
mentarily obstructed), weakly adversarial (i.e. where the
tracker sometimes switches from the person to the PAT, and
tends to latch back onto the person), or failure.

Looking at Table 6, we see that the tracker was quickly
drawn to PATs when deployed on a stationary camera. On
the other hand, it was much harder to fool the person tracker
when the drone was servoing the target. Whether the PAT
was displayed digitally on a monitor, or printed as an A0
poster, we anecdotally observed that both of these materi-
als displayed some amount of specular reflections. These
specularities changed as the camera moved around, and thus
likely had altered the appearances of PATs during our ser-
voing runs and rendered them inert. Therefore, devising
adversaries that are robust to specularities would be an ex-
citing avenue for future research.

Table 6: Physical-world attack performance.

Runs Strong Weak Fail
Stationary 57 (71%) 13 (16%) 10 (13%)
Servo 6 (33%) 5 (28%) 7 (39%)
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Figure 11: The emergence of “critical adversarial patterns” for non-imitation and imitation attacks.



Figure 12: PAT fools the tracker in simulation. Here, the purple bounding box represents the ground truth bounding box of
the tracked object, while the green bounding box represents the tracker’s prediction. Note that the sequence starts from the
top-left frame to the bottom-right frame.



Figure 13: PAT fools the tracker in the real world indoor setting, where the PAT is displayed on a TV. Note that the sequence
starts from the top-left frame to the bottom-right frame.



Figure 14: PAT fools the tracker in the real world indoor setting during servoing run. Note that the sequence starts from the
top-left frame to the bottom-right frame.



Figure 15: PAT fools the tracker in the real world outdoor setting during servoing run, where the PAT is printed as a poster.
Note that the sequence starts from the top-left frame to the bottom-right frame.


