Bayesian Relational Memory for Semantic Visual Navigation
Supplementary Materials

Yuxin Wu¥ Aviv Tamar®
"UC Berkeley

+{jxwuyi,russell}@cs.berkeley.edu

Yi Wu'l

A. Video Demo

A video demo visualizing a successful navigation trajec-
tory by BRM can be found at the following url:

https://drive.google.com/file/d/
1vCFQZfFK1X6WJacrQID2kMQVzRD4WeTs/view?
usp=sharing.

B. Environment Details

In RoomNav the 8 targets are: kitchen, living room, dining
room, bedroom, bathroom, office, garage and outdoor. We inherit
the success measure of “see” from [2]: the agent needs to see some
corresponding object for at least 450 pixels in the input frame and
stay in the target area for at least 3 time steps.

Originally the House3D environment supports a set of 13 dis-
crete actions. Here we reduce it to 9 actions: large forward, for-
ward, left-forward, right-forward, large left rotate, large right ro-
tate, left rotate, right rotate and stay still. More environment de-
tails can be found in the appendix of Wu et al. [2]. We also imple-
mented a faster and customized variant of the House3D environ-
ment, which is available at https://github.com/jxwuyi/
House3D/tree/C++l

C. Evaluation Details

We measure the success rate on Eey Over 5689 test episodes,
which consists of 5000 randomly generated configurations and
689 specialized for faraway targets to increase the confidence
of measured success rates. These 689 episodes are generated
such that for each plan-distance, there are at least 500 evalua-
tion episodes. Each test episode has a fixed configuration for a
fair comparison between different approaches, i.e., the agent will
always start from the same location with the same target in that
episode. Note that we always ensure that (1) the target is con-
nected to the birthplace of the agent, and (2) the the birthplace of
the agent is never within the target room. In addition to the detailed
numbers in Table 1,we visualize the success rates with confidence
intervals for BRM and baseline methods in Figure[§] The confi-
dence interval is obtained by fitting a binomial distribution.

D. Ablation Study: the Semantic Detector

In BRM, we use a CNN detector to extract the semantic sig-
nals at test time. Here we also evaluate the performances of all the

Stuart Russell’
*Facebook Al Research

${yuxinwu,gkioxari,yuandong}@fb.com

Georgia Gkioxari* ~ Yuandong Tian*

STechnion 1OpenAl

§avivt@technion.ac.il

approaches using the oracle signals from the House3D environ-
ment. The results are in Table[6} where we also include the BRM
agent using CNN detector as a reference. Generally, using both
the ground truth signal and using the CNN detector yield compa-
rable overall performances in both metrics of success rate and SPL.
They all consistently outperform all the baseline methods, which
indicates that the probabilistic relational graph is robust over the
noise on semantic signals (the robustness if controlled by 1)°%).
One interesting observation is that there are many cases, using
CNN detector produces better results than using the ground truth
signals. We hypothesis that this is because the semantic labels in
House3D is noisy and therefore a well-trained CNN detector will
not be influenced by the noisy labels at test time.

E. Additional Results on Episode Length

We illustrate the ground truth shortest distance information as
well as the average episode length of success episodes for all the
approaches. The results are shown in Table[7] The average ground
truth shortest path is around 46.86 steps. Note that the agent has
9 actions per step and suffers from strong partial observability,
which indicates the difficulty of the task.

F. Additional Implementation Details

The source code is available at https://github.com/
jxwuyl/HouseNavAgent.

F.1. Learning the LSTM Locomotion

Policy Architecture: We utilize the same policy architecture
and settings as [2]: we have 4 convolution layers of 64, 64, 128,
128 channels each and with kernel size 5 and stride 2, an MLP
layer of 256 units, an LSTM cell of 256 units, two MLP layers of
126 and 64 units for policy head and another 2 MLP layers of 64
and 32 units for value head. Batch normalization is applied to all
the layers before LSTM. Activation is ReLU. The a only difference
is that the original policy uses a gated attention mechanism for
target conditioning while we use a behavior approach by training
a separate sub-policy for each semantic target.

For the semantic augmented policy, we feed the semantic in-
formation to the MLP layer before LSTM.

Hyperparameters: We run a parallel version of A2C [1] with
1 optimizer and 200 parallel rollout workers, each of which simu-
lates a particular training house. We collect a training batch of 64

https://drive.google.com/file/d/1vCFQZfFK1X6WJacrQID2kMQVzRD4WeTs/view?usp=sharing
https://drive.google.com/file/d/1vCFQZfFK1X6WJacrQID2kMQVzRD4WeTs/view?usp=sharing
https://drive.google.com/file/d/1vCFQZfFK1X6WJacrQID2kMQVzRD4WeTs/view?usp=sharing
https://github.com/jxwuyi/House3D/tree/C++
https://github.com/jxwuyi/House3D/tree/C++
https://github.com/jxwuyi/HouseNavAgent
https://github.com/jxwuyi/HouseNavAgent

RoomNav H=300 (meters)

RoomNav H=1000 (meters)

0.8 09-
B random B random
0.7 - 0.8 -
s pure u(g) 07 | s pure u(8)
o 0.6 - aug.usle) v - I aug.usle)
T 05- mmE RNN control. © 06 == RNN control.
05-
] 04 - BRM 0 : BRM
bu] L ooa-
S 03 S 3
1] w 0.3 | I
02- I 0.2 |
0.1- ‘ . 01- }]
ol il
] |
0.0- ! e i 0.0- g ; : ;
2 3 4 5

optlmal plan _,tep_,

optimal plan steps

Figure 8. Comparing BRM with baselines in success rate with confidence interval. Approaches of interest include random policy (red), pure
LSTM policy (blue), the semantic-aware LSTM policy (purple), the hierarchical policy (grey) and BRM (yellow). In all plots, the y-axis is
success rate while the x-axis is the optimal planning distance. BRM outperforms all baselines and the gap becomes more significant when

horizon increase, namely, more planning computations.

plan-dist \ 1 \ 2 \ 3 \ 4 \ 5 \ overall
Horizon H = 300
plan-dist \ 1 \ 2 \ 3 4 5 \ avg.
random 20.5/159 | 69/16.7 | 3.8/10.7 1.6/42 3.0/8.8 7.27/13.6
pure (6) 494/47.6 | 11.8/27.6 | 2.0/4.38 26/108 | 42/13.2 | 13.1/229
aug.ugs () (true) 519/664 | 11.1/242 | 33/7.8 24760 3.0/8.7 13.2/23.3
RNN control. (true) | 54.9/48.1 | 20.2/37.7 | 82/225 | 56/13.8 | 9.8/22.7 | 20.0/32.6
BRM (true) 58.8/60.7 | 25.3/55.6 | 104/269 | 7.6/22.2 | 9.2/234 | 23.6/44.9
BRM (CNN) 57.8/654 | 24.4/543 | 10.5/28.3 | 5.8/18.6 | 11.2/29.8 | 23.1/45.3
Horizon H = 1000
plan-dist \ 1 \ 2 \ 3 4 5 | avg
random 243/17.6 | 13.5/203 | 9.1/143 8.0/9.3 7.0/11.5 | 13.0/17.0
pure 1(6) 60.8/47.6 | 23.3/27.6 | 7.6/4.8 82/10.8 | 11.0/13.2 | 22.5/229
aug.us(0) (true) 62.4/61.3 | 229/30.7 | 89/143 | 7.2/12.8 | 9.0/11.4 | 22.5/28.1
RNN control. (true) | 70.2/51.3 | 40.8/48.6 | 22.8/32.2 | 16.4/23.4 | 242/41.0 | 37.4/42.9
BRM (true) 70.3/61.8 | 44.9/70.5 | 31.7/50.8 | 19.0/33.3 | 28.0/42.2 | 41.7/59.8
BRM (CNN) 73.7/749 | 43.6/66.0 | 29.2/449 | 20.4/27.1 | 28.4/42.5 | 41.1/57.5

Table 6. Metrics of Success Rate(%) / SPL(%c) evaluating the performances of BRM and baselines agents using the ground truth oracle
semantic signals provided by the environments. We also include the performance of the original BRM agent using CNN detector as a
reference. The performance of BRM-CNN agents is comparable to BRM-true agents and sometimes even better. More discussions are in

Sec.[Dl

trajectories with 30 continuous time steps in each iteration. We set
v = 0.97, batch size 64, learning rate 0.001 with Adam, weight
decay 107" and entropy bonus 0.1. We also add the squared I»
norm of policy logits to the total loss with a coefficient of 0.01.
We normalize the advantage to mean O and standard deviation 1.
We totally run 60000 training iterations and use the final model as
our learned policy.

Reward shaping: The reward at each time step is computed
by the difference of shortest paths in meters from the agent’s loca-
tion to the goal after taking a action. We also add a time penalty
of 0.1 and a collision penalty of 0.3. When the agent reaches the
goal, the success reward is 10.

Curriculum learning: We run a curriculum learning by in-
creasing the maximum of distance between agent’s birth meters

and target by 3 meters every 10000 iterations. We totally run
60000 training iterations and use the final model as our learned

policy u(6).
F.2. Building the Relational Graph

We run random exploration for 300 steps to collect a sample of
z. For a particular environment, we collect totally 50 samples for

each z; ;. For all i # j, we set 'L/)flfo = 0.001 and 1/1?5’51 =0.15.

F.3. Training the CNN Semantic Extractor

We take the panoramic view as input, which consists of 4 im-
ages, s, ..., s* with different first person view angles. The only
exception is that for target “outdoor”, we notice that instead of us-
ing a panoramic view, simply keeping the recent 4 frames in the

Average Ground Truth Shortest Path Length

plan-dist \ 1 \ 2

3 \ 4 \ 5 \overall

Oracle

| 12.27 [4253 | 61.09 | 72.47 | 63.74 | 46.86

Average Successful Episode Length

plandist [1 | 2 3] 4 [5 | ovel
Horizon H = 300
random 34.0 | 112.7 | 143.8 | 148.0 | 149.7 89.8
pure 1(6) 55.2 | 107.0 | 127.9 | 140.8 | 139.4 84.7
aug.s(0) 49.7 | 112.5 | 159.9 | 179.1 | 176.8 89.2
RNN control. | 65.0 | 132.3 | 157.2 | 142.7 | 144.1 | 111.8
BRM 56.5 | 1244 | 167.8 | 150.7 | 127.6 | 107.7
Horizon H = 1000
random 121.7 | 354.7 | 426.6 | 532.8 | 409.5 | 322.1
pure 1(0) 552 | 107.0 | 1279 | 140.8 | 139.4 84.7
aug.ug(60) 163.1 | 360.9 | 471.9 | 460.7 | 432.5 | 307.1
RNN control. | 174.0 | 368.4 | 465.3 | 466.6 | 397.6 | 339.5
BRM 172.9 | 350.5 | 460.0 | 512.3 | 418.1 | 337.0

Table 7. Averaged successful episode length for different approaches. The length of shortest path reflects the strong difficulty of this task.

trajectory leads to the best prediction accuracy. We use an CNN
feature extractor to extract features f(s?) by applying CNN layers
with kernel size 3, strides [1,1,1,2,1,2,1,2,1,2] and channels
[4,8,16, 16,32, 32,64, 64,128, 256]. We also use relu activation
and batch norm. Then we compute the attention weights over these
4 visual features by I; = f(sb)W{Wa [f(s3),..., f(s5)] and
a; = softmax(l;). Then we compute the weighted average of
these four frames g = >, a;f(s}) and feed it to a single layer
perceptron with 32 hidden units. For each semantic signal, we
generate 15k positive and 15k negative training data from Ein
and use Adam optimizer with learning rate He-4, weight decay le-
5, batch size 256 and gradient clip of 5. We keep the model that
has the best prediction accuracy on Eyaid.

For a smooth prediction during testing, we also have a hard
threshold and filtering process on the CNN outputs: s(7;) will be
1 only if the output of CNN remains a confidence for 7; over 0.9
for consecutively 3 steps.

References

[1] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and
Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In International Conference on Machine
Learning, pages 1928-1937, 2016.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.
Building generalizable agents with a realistic and rich 3D en-
vironment. arXiv preprint arXiv:1801.02209, 2018.

(2]

